Advanced Macroeconomics II
Monetary Models (II): Models with Nominal Rigidities

Lorenza Rossi
(Spring 2014)

University of Pavia
Part of these slides are based on Jordi Gali slides for Macroeconomia Avanzada II.
BASIC NEW KEYNESIAN MODEL

NK model has become the workhorse for:

- the analysis of monetary policy;
- the study of business cycle dynamics;
- welfare evaluation.
- interaction between monetary and fiscal policy
EMPIRICAL EVIDENCE: CEE (1999)

IRFS to an EXOGENOUS TIGHTENING of MONETARY POLICY
MAIN FEATURES OF NEW KEYNESIAN MODELS

RBC FRAMEWORK with:

- **Imperfect competition in goods market**: each firm produces a differentiated good for which it sets the price. Firms are not \textit{price-taker}.
- **Sticky prices**
- **Walrasian Labor Market**
- **Closed Economy**
- **No capital accumulation**
Despite the fact that there are rational expectations (RE), money is not neutral in the short run.

WHY?

- Goods markets are not Walrasian \Rightarrow Monopolistic Competition: is the necessary condition to introduce price-stickyness and demand driven fluctuations!!
- Price-stickyness \Rightarrow money has real effects in the short run. \Rightarrow The classical dichotomy does not hold.
- Since the basic NK model does not consider any form of capital accumulation \Rightarrow the money transmission channel is via consumption smoothing.
- The NK model is Keynesian in the short-run and classical in the long-run!
FIRST INTUITION

- Suppose that the economy is hit by a positive monetary policy shock \(\Rightarrow \) the nominal interest rate decreases.
- If prices are sticky the real interest rate decreases
- Consumers decide to consume more today than tomorrow
- The aggregate demand increases \(\Rightarrow \) since firms that cannot revise their price will increase their supply of goods \(\Rightarrow Y \uparrow \), and money has real effects in the short run
- In the long run price are flexible and money is neutral!
LABOR MARKET

In the basic New Keynesian model

- LABOR MARKET is still WALRASIAN: As in RBC model there is no involuntary unemployment!
- Differently from Keynesian models, real wages are not countercyclical but procyclical (as in RBC models) \(\implies \) EVIDENCE: real wages seems to be acyclical
THE MODEL

HOUSEHOLDS I

The lifetime utility:

\[E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, N_t) \text{ with } 0 < \beta < 1 \]

(1)

where

\[C_t \equiv \left(\int_0^1 C_t(i) \frac{\varepsilon - 1}{\varepsilon} \, di \right)^{\frac{\varepsilon}{\varepsilon - 1}} \]

is a Dixit-Stiglitz consumption basket. \(C_t(i) \): there exists a continuum of goods represented by an interval \([0, 1]\). The quantity of good \(i\) consumed by the household in period \(t\).
HOUSEHOLDS II

- Households’ period budget constraint is:

\[P_t C_t + Q_t B_t = B_{t-1} + W_t N_t + T_t + D_t \]

\(t = 0, 1, 2... \) plus solvency constraint.

- \(P_t C_t = \int_0^1 P_t \,(i) \, C_t \,(i) \) and \(P_t \,(i) \) is the price of good \(i \).
- \(W_t \): nominal wage;
- \(B_t \): quantity of one-period, nominally riskless discount bonds purchased in period \(t \) and maturing in \(t + 1 \).
- Each bond pays one unit of money at maturity and its price is \(Q_t = \frac{1}{R_t} \).
- \(T_t \): lump-sum transfer
- \(D_t \): dividends from ownership of firms (Households are the owner of firms)
SOLVING THE HOUSEHOLDS PROBLEM

Optimal intertemporal problem

\[
\max_{\{C_t, N_t, B_t\}} E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, N_t),
\]

s.t. \(P_t C_t + (1 + i_t)^{-1} B_t = B_{t-1} + W_t N_t + T_t + D_t \) \hspace{1cm} (2)

and the solvency constraint.
The period utility is: \(U(C_t, N_t) = \frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\varphi}}{1+\varphi} \).

The Langrangean:

\[
L = E_0 \sum_{t=0}^{\infty} \beta^t \left\{ U(C_t, N_t) - \lambda_t \left[P_tC_t + \frac{B_t}{1+i_t} - B_{t-1} - W_tN_t - T_t - D_t \right] \right\}
\]

the first order conditions are:

\[
\begin{align*}
\frac{\partial L}{\partial C_t} &= 0 : \quad C_t^{-\sigma} = \lambda_t P_t \implies C_{t+1}^{-\sigma} \lambda_{t+1} P_{t+1} \\
\frac{\partial L}{\partial B_t} &= 0 : \quad -\lambda_t (1+i_t)^{-1} + \beta E_t \lambda_{t+1} = 0 \\
\frac{\partial L}{\partial N_t} &= 0 : \quad N_t^{\varphi} = W_t \lambda_t
\end{align*}
\]
Combining the first order conditions, then as usual we get:

Labor supply: \[\frac{W_t}{P_t} = N_t^\varphi C_t^\sigma \] \hspace{1cm} (3)

Euler equation: \[R_t^{-1} = \beta E_t \left[\left(\frac{P_t}{P_{t+1}} \right) \left(\frac{C_{t+1}^{-\sigma}}{C_t^{-\sigma}} \right) \right] \] \hspace{1cm} (4)
FIRMS
Monopolistic Competition

- The basic NK model abstracts from capital accumulation and assume that there is a continuum of intermediate good-producing firms $i \in (0, 1)$ which hire $N_t(i)$ units of labor from the representative household and produce $Y_t(i)$ units of the intermediate good using the following technology:

$$Y_t(i) = A_t N_t^{1-\alpha}(i). \quad (5)$$

where $\ln(A_t/A) = a_t$ is an exogenous process of technological progress (or total factor productivity TFP), which evolves according to:

$$a_t = \rho_a a_{t-1} + \varepsilon_{a,t}, \quad \varepsilon_{a,t} \sim N(0, \sigma_a^2) \quad i.i.d.$$

Since a_t is unknown agents must form expectations about it. They adopt the RE to do so.
Costs minimization

Before choosing the price of its goods, a firm chooses the level of \(N_t (j) \) which minimizes its costs, solving the following costs minimization problem:

\[
\min_{\{N_t(i)\}} TC_t (i) = W_t N_t (i)
\]

subject to (5)

The first order condition with respect to \(N_t (i) \) is given by:

\[
\Psi_t (i) = \frac{W_t}{(1 - \alpha) A_t (N_t (i))^{-\alpha}},
\]

where \(\Psi_t (i) \) represents firm’s \(i \) marginal costs and the Lagrangian multiplier of the costs minimization problem.
Firms maximize

$$\max_{\{P_t(i)\}} P_t(i) Y_t(i) - \Psi_t(i) Y_t(i)$$

s.t.

$$Y_t(i) = \left(\frac{P_t(i)}{P_t} \right)^{-\epsilon} Y_t$$

where $\Psi_t(i)$ are nominal marginal costs faced by firm i. F.o.c.

$$(1 - \epsilon) \left(\frac{P_t(i)}{P_t} \right)^{-\epsilon} Y_t + \epsilon \Psi_t(i) \left(\frac{P_t(i)}{P_t} \right)^{-\epsilon} \frac{1}{P_t(i)} Y_t$$

then the optimal price is:

$$P_t(i) = \frac{\epsilon}{\epsilon - 1} \Psi_t(i)$$

(7)

or

$$P_t(i) = \mathcal{M} \Psi_t(i)$$

where $\mathcal{M} \equiv \frac{\epsilon}{\epsilon - 1} = 1 + \frac{1}{\epsilon - 1} > 1$ is the gross markup. The optimal price is a markup $\frac{\epsilon}{\epsilon - 1}$ over nominal marginal costs $\Psi_t(i)$.
Combining the equation of marginal costs, i.e:

$$\Psi_t(i) = \frac{W_t}{(1 - \alpha) A_t N_t(i)^{-\alpha}}$$

with that of the optimal price, in logs

$$p_t(i) = \mu + \psi_t(i)$$

$$= \mu + w_t - (a_t - \alpha n_t(i) + \log(1 - \alpha))$$

where $\mu \equiv \log M$ i $\psi_t(i) \equiv \log \Psi_t(i)$. Notice that in log-deviation would be:

$$\hat{p}_t(i) = \hat{\psi}_t(i)$$

$$= \hat{w}_t - (a_t - \alpha \hat{n}_t(i))$$
Equilibrium (in logs)

- **Aggregate Demand**

 \[y_t(i) = c_t(i), \quad i \in [0, 1] \quad \implies \quad y_t = c_t \]

 \[y_t = E_t\{y_{t+1}\} - \frac{1}{\sigma}(i_t - E_t\{\pi_{t+1}\} - \rho) \]

- **Labor demand (prod. function solved for n):**

 \[n_t = \frac{1}{1 - \alpha}(y_t - a_t) \]

- **Aggregate supply:**

 \[p_t = \mu + w_t - (a_t - \alpha n_t + \log(1 - \alpha)) \]

 \[w_t = p_t + \sigma c_t + \varphi n_t \]

- **Bond Market:**

 \[b_t = 0 \]
Equilibrium of real variables:

\[n_t = \frac{(1 - \sigma)a_t + \log(1 - \alpha) - \mu}{\sigma(1 - \alpha) + \varphi + \alpha} \]

\[y_t = c_t = \frac{(1 + \varphi)a_t + (1 - \alpha)(\log(1 - \alpha) - \mu)}{\sigma(1 - \alpha) + \varphi + \alpha} \]

\[w_t - p_t = \frac{(\sigma + \varphi)a_t + (\sigma(1 - \alpha) + \varphi)(\log(1 - \alpha) - \mu)}{\sigma(1 - \alpha) + \varphi + \alpha} \]

\[r_t \equiv i_t - E_t\{\pi_{t+1}\} = \rho - \frac{\sigma(1 + \varphi)(1 - \rho_a)}{\sigma(1 - \alpha) + \varphi + \alpha} a_t \]

\[\implies \text{effect of an increase in } (\mu). \text{ Notice that since the markup is constant it affects logs and long-run but not the log-deviations, it means that it does not affect the short run.} \]

\[\implies \text{Money Neutrality long-run but also short-run.} \]

\[\implies \text{The Optimal monetary policy is indeterminate} \]

\[\implies \text{The equilibrium is inefficient} \]

\[\implies \text{Monetary policy: affects nominal variables} \]
Monopolistic Competition and Constant Prices

Assumptions:

- Prices are constant: \(p_t = p = 0 \) (normalization), \(t = 0, 1, 2, \ldots \)
- Then the markup is: \(\mu_t = -\psi_t \geq 0 \), \(t = 0, 1, 2, \ldots \)

Equilibrium (omitting constants)

\[
y_t = c_t
\]

\[
y_t = E_t\{y_{t+1}\} - \frac{1}{\sigma}(i_t - \rho)
\]

\[
n_t = \frac{1}{1 - \alpha}(y_t - a_t)
\]

\[
w_t = \sigma y_t + \varphi n_t
\]

\[
\mu_t = w_t - (a_t - \alpha n_t)
\]
Monopolistic Competition and Constant Prices

- Interest rate rule:

\[i_t = \rho + \phi_\pi \pi_t + \nu_t = \rho + \nu_t \]

with

\[\nu_t = \rho_v \nu_{t-1} + \varepsilon_t^\nu \]

Equilibrium:

Iterating forward the IS and excluding bubbles:

\[y_t = \frac{1}{\sigma(1 - \rho_v)} \nu_t \]

From the production function:

\[n_t = \frac{1}{\sigma(1 - \rho_v)(1 - \alpha)} \nu_t - \frac{1}{1 - \alpha} a_t \]

\(\Rightarrow \) Monetary policy is not neutral

\(\Rightarrow \) A technology shock reduced labor hours if it is not accompanied by an expansionary monetary policy.
Money Supply
\[m_t = \rho_m m_{t-1} + \varepsilon_t^m \]

Money Demand
\[m_t = p_t + y_t - \eta i_t = y_t - \eta i_t \]

Equilibrium:
\[
y_t = \frac{1}{1 + \sigma \eta} \sum_{k=0}^{\infty} \left(\frac{\sigma \eta}{1 + \sigma \eta} \right)^k E_t\{m_{t+k}\}
\]
\[
= \frac{1}{1 + \sigma \eta (1 - \rho_m)} m_t
\]

\[
n_t = \frac{1}{(1 - \alpha)(1 + \sigma \eta (1 - \rho_m))} m_t - \frac{1}{1 - \alpha} a_t
\]

\[\implies\] Monetary Policy non-neutrality
\[\implies\] A technology shock reduced labor hours if it is not accompanied by an expansionary monetary policy.
The Basic New Keynesian Model

- **NK Phillips Curve (NKPC)**

\[\pi_t = \beta E_t \{ \pi_{t+1} \} + \kappa \tilde{y}_t \]

with \(\tilde{y}_t \equiv y_t - y_t^n \) ("output gap").

- **Dynamic IS Curve**

\[\tilde{y}_t = -\frac{1}{\sigma} (i_t - E_t \{ \pi_{t+1} \} - r^n_t) + E_t \{ \tilde{y}_{t+1} \} \]

- **Interest rate rule**

Example:

\[i_t = \rho + \phi_\pi \pi_t + \phi_y \tilde{y}_t + v_t \]
The Basic New Keynesian Model

- **Assumption:** probability that a firm can revise its price is \(1 - \theta\) (independent from time and from what done by other firms).

\[\Rightarrow \text{average price duration } \frac{1}{1-\theta} \]

\[\Rightarrow \text{share of firms that keep price constant: } \theta \]

\[\Rightarrow \theta \in [0, 1] : \text{index of price rigidity} \]

- **Price level evolution**

\[p_t = \theta p_{t-1} + (1 - \theta) p_t^* \]

- **Optimal price**

\[p_t^* = \mu + (1 - \beta \theta) \sum_{k=0}^{\infty} (\beta \theta)^k E_t \{ \psi_{t+k} \} \]

- **Inflation: New Keynesian Phillips Curve**

\[\pi_t = \beta E_t \{ \pi_{t+1} \} - \lambda (\mu_t - \mu) \]

with \(\mu_t \equiv p_t - \psi_t \) (markup) and \(\lambda \equiv \frac{(1-\theta)(1-\beta\theta)}{\theta} \)
- **Price Markup** (assuming: $\alpha = 0$)

\[\mu_t = p_t - (w_t - a_t) \]

- **Labor market equilibrium**

\[w_t - p_t = \sigma c_t + \varphi n_t \]

\[n_t = y_t - a_t \]

- **Good Market equilibrium**

\[y_t = c_t \]
Combining together the previous equations

\[\mu_t = (1 + \varphi) a_t - (\sigma + \varphi) y_t \]

Under Flexible price equilibrium \(\mu = \frac{\varepsilon}{\varepsilon - 1} \), and then

\[\mu = (1 + \varphi) a_t - (\sigma + \varphi) y_t^n \]

\[\Rightarrow y_t^n = -\frac{\mu}{\sigma + \varphi} + \frac{1 + \varphi}{\sigma + \varphi} a_t \]

Combining the two:

\[\mu_t - \mu = -(\sigma + \varphi) \tilde{y}_t \]

where \(\tilde{y}_t = y_t - y_t^n \)

NKPC becomes

\[\pi_t = \beta E_t \{ \pi_{t+1} \} + \kappa \tilde{y}_t \]

with \(\kappa \equiv \lambda (\sigma + \varphi) \)
Properties of the NKPC

(i) "Forward-looking"

\[\pi_t = \kappa \sum_{k=0}^{\infty} \beta^k E_t \{ \tilde{y}_{t+k} \} \]

\[\Rightarrow \text{past inflation do not affect inflation today} \]

(ii) No trade-off between stabilizing inflation and output gap..

\[\Rightarrow \text{"divine coincidence" (Blanchard-Galí)} \]

\[\Rightarrow \text{No cost of disinflation.} \]

(iii) Not easy to measure the output gap empirically (Galí-Gertler 1998).
Properties of the IS Curve

- Consumption Euler equation + good market equilibrium

\[y_t = E_t \{ y_{t+1} \} - \frac{1}{\sigma} (i_t - E_t \{ \pi_{t+1} \} - \rho) \]

Subtracting at both sides \(y^n_t \) and \(y^n_{t+1} \), with \(\tilde{y}_t \equiv y_t - y^n_t \)

\[\tilde{y}_t = -\frac{1}{\sigma} \left(i_t - E_t \{ \pi_{t+1} \} - r^n_t \right) + E_t \{ \tilde{y}_{t+1} \} \]

with

\[r^n_t \equiv \rho + \sigma E_t \{ \Delta y^n_{t+1} \} \]

\[= \rho + \frac{\sigma(1 + \varphi)}{\sigma + \varphi} E_t \{ \Delta a_{t+1} \} \]
Monetary Policy

- **Taylor Rule**

\[i_t = \rho + \phi_{\pi_t} \pi_t + \phi_{y_t} \hat{y}_t + \nu_t \]

- Role of monetary aggregates
 - Money Demand (ad hoc):

\[m_t - p_t = y_t - \eta i_t \]

 - Implications for the growth rate of the money supply:

\[\Delta m_t = \pi_t + \Delta y_t - \eta \Delta i_t \]
Basic NK model

- **NKPC**

\[\pi_t = \beta E_t\{\pi_{t+1}\} + \kappa \tilde{y}_t \]

with \(\tilde{y}_t \equiv y_t - y^n_t \) ("output gap").

- **IS Curve**

\[\tilde{y}_t = -\frac{1}{\sigma}(i_t - E_t\{\pi_{t+1}\} - r^n_t) + E_t\{\tilde{y}_{t+1}\} \]

- **Interest rate rule**

Example:

\[i_t = \rho + \phi_\pi \pi_t + \phi_y \tilde{y}_t + \nu_t \]

- **Exogenous variables**

\[\nu_t = \rho_\nu \nu_{t-1} + \varepsilon^\nu_t \]

\[a_t = \rho_a a_{t-1} + \varepsilon^a_t \]
Example with exact solution

- Assume that:

 (i) \(\{v_t\} \) and \(\{a_t\} \) are white noise (\(\rho_a = \rho_v = 0 \))

 (ii) \(i_t = \rho + \phi_\pi \pi_t + v_t \)

 (iii) log. utility in consumption (\(\sigma = 1 \))

\[\Rightarrow \hat{r}_t^n = -a_t \]

\[\Rightarrow \hat{y}_t^n = a_t \]

Conjecture ("method of undetermined coefficient"). The solution must be of the form:

\[\tilde{y}_t = \psi_{ya} a_t + \psi_{yv} v_t \]

\[\pi_t = \psi_{\pi a} a_t + \psi_{\pi v} v_t \]
Solution:

\[
\tilde{y}_t = \frac{1}{1 + \kappa \phi_{\pi}} a_t - \frac{1}{1 + \kappa \phi_{\pi}} \nu_t
\]

\[
\pi_t = -\frac{\kappa}{1 + \kappa \phi_{\pi}} a_t - \frac{\kappa}{1 + \kappa \phi_{\pi}} \nu_t
\]

\[
\hat{y}_t = \tilde{y}_t + \tilde{y}_t^n = \frac{\kappa \phi_{\pi}}{1 + \kappa \phi_{\pi}} a_t - \frac{1}{1 + \kappa \phi_{\pi}} \nu_t
\]

\[
\hat{n}_t = \hat{y}_t - a_t = -\frac{1}{1 + \kappa \phi_{\pi}} a_t - \frac{1}{1 + \kappa \phi_{\pi}} \nu_t
\]

\[
i_t = \rho - \frac{\kappa \phi_{\pi}}{1 + \kappa \phi_{\pi}} a_t + \frac{1}{1 + \kappa \phi_{\pi}} \nu_t
\]

\[
m_t = \frac{\kappa (\phi_{\pi} (1 + \eta) - 1)}{1 + \kappa \phi_{\pi}} a_t - \frac{1 + \kappa + \eta}{1 + \kappa \phi_{\pi}} \nu_t + p_{t-1}
\]

- Discussion
Model Calibration and Simulation (Galí 2008/ rev2015)

- Calibration:
 \[\beta = 0.99, \sigma = \phi = 1 \]
 \[\alpha = 1/3 \]
 \[\phi_{\pi} = 1.5, \phi_y = 0.5/4 \]
 \[\theta = 3/4 \]
 \[\eta = 4 \]
 \[\rho_v = 0.5, \rho_a = 0.9 \]

- Effects of Monetary Shocks
- Effects of Technology Shocks
Responses to a Monterey Policy Shock: Interest rate rule
Responses to a Technology Shock: Interest rate rule