Advanced Macroeconomics II
Monetary Policy

Lorenza Rossi
(Spring 2014)

University of Pavia
Part of these slides are based on Jordi Galì slides for Macroeconomia Avanzada II.
The Basic New Keynesian Model

- NK Phillips Curve (NKPC)

\[\pi_t = \beta E_t \{ \pi_{t+1} \} + \kappa \tilde{y}_t \]

with \(\tilde{y}_t \equiv y_t - y^*_t \) ("output gap").

- Dynamic IS Curve

\[\tilde{y}_t = -\frac{1}{\sigma} (i_t - E_t \{ \pi_{t+1} \} - r^*_n) + E_t \{ \tilde{y}_{t+1} \} \]

- Interest rate rule

Example:

\[i_t = \rho + \phi_\pi \pi_t + \phi_y \tilde{y}_t + \nu_t \]
Assume that: \(y_t = y_t^e \), or \(y_t - y_t^e = \text{const.} \).

\[
\begin{align*}
\tilde{y}_t &= E_t \tilde{y}_{t+1} - \sigma^{-1} (i_t - E_t \pi_{t+1} - r_t^e) \\
\pi_t &= \beta E_t \pi_{t+1} + \kappa \tilde{y}_t \\
\tilde{y}_t &= y_t - y_t^e \\
r_t^e &= \rho + \sigma E_t \Delta y_{t+1}^e
\end{align*}
\]

stabilizing inflation is equivalent of stabilizing the output gap, therefore there is no trade-off between inflation and output/unemployment. In fact, solving forward the Phillips curve:

\[
\pi_t = \kappa \sum_{i=0}^{\infty} \beta^i E_t \tilde{y}_{t+i}
\]

set \(\tilde{y}_t = 0 \) then \(\pi_t = 0 \) \(\implies \) STRICT INFLATION TARGETING IS THE OPTIMAL POLICY! The so called "divine coincidence" holds (Blanchard Galì (2006 JMCB)).
IMPLEMENTABILITY of the OPTIMAL RULE in the absence of a trade-off

- Notice $\pi_t = 0$ implies $\tilde{y}_t = 0$ and therefore from the IS curve the optimal interest rate is:

$$i_t = r^n_t$$

(1)

- Is the optimal rule implementable? NO: Multiple Equilibria

- Alternative rule: A simple Taylor Rule

$$i_t = \rho + \phi_\pi \pi_t$$

with $\phi_\pi > 1$ the simple rule implies a unique equilibrium, \implies implementable!
Welfare based Loss-Function (second order approximation of Households Utility)

\[\mathcal{L} = \frac{\epsilon}{\lambda} \left[\frac{\kappa}{\epsilon} \text{var}(\tilde{y}_t) + \text{var}(\pi_t) \right] \]

Example:

\[i_t = \rho + \phi_\pi \pi_t + \phi_y \tilde{y}_t \]
Evaluation of the Simple Taylor Rule

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(\phi_\pi)</th>
<th>(\phi_y)</th>
<th>(\sigma(\tilde{y}))</th>
<th>(\sigma(\pi))</th>
<th>Welfare Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_\pi)</td>
<td>1.5</td>
<td>1.5</td>
<td>5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>(\phi_y)</td>
<td>0.125</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\sigma(\tilde{y}))</td>
<td>0.55</td>
<td>0.28</td>
<td>0.04</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>(\sigma(\pi))</td>
<td>2.60</td>
<td>1.33</td>
<td>0.21</td>
<td>6.55</td>
<td></td>
</tr>
<tr>
<td>Welfare Loss</td>
<td>0.30</td>
<td>0.08</td>
<td>0.002</td>
<td>1.92</td>
<td></td>
</tr>
</tbody>
</table>
MONETARY POLICY TRADE-OFFs

- In the model analyzed so far the Central Bank does not face any trade-off between stabilizing output and inflation and therefore **strict inflation targeting is the optimal policy**!

- The analysis is not realistic! Central Banks face significant trade-offs at least in the short run
Clarida, Galì, Gertler (1999 JEL) - **Result 1:** To the extent cost-push inflation is present, there exists a short run trade-off between inflation and output variability.

The presence of short run trade-offs have led inflation targeting central banks to pursue a policy that allows for a partial accommodation of inflationary pressures in the short run, in order to avoid too large instability of output and employment, while remaining committed to a medium term inflation target. A policy of that kind is often referred to in the literature as "flexible inflation targeting".
EXOGENOUS TRADE-OFF

\[x_t = E_t x_t - \sigma^{-1} (\hat{\pi}_t - E_t \pi_{t+1} - r_t^e) \]
\[\pi_t = \beta E_t \pi_{t+1} + \kappa x_t + u_t \]

where

- \(u_t \) is an AR (1) cost-push shock (supply shock) attached to the NKPC:
 \[u_t = \rho_u u_{t-1} + \varepsilon_{u,t} \]

- \(r_t^e \) is the efficient interest rate:
 \[r_t^e = \rho + \sigma E_t \Delta y_{t+1}^e \]

- **Notice:** \(x_t = y_t - y_t^e \) is the welfare relevant output-gap.
Endogenous output/inflation trade-off

Assume that

\[y_t^e - y_t^n \neq \text{const} \]

then \(x_t = y_t - y_t^e \) is the welfare relevant output gap, and given that

\[
\begin{align*}
y_t - y_t^n &= y_t - y_t^e + y_t^e - y_t^n \\
&= x_t + y_t^e - y_t^n
\end{align*}
\]

then the dynamic system becomes

\[
\begin{align*}
x_t &= E_t x_t - \sigma^{-1} (\hat{i}_t - E_t \pi_{t+1}) \\
\pi_t &= E_t \pi_{t+1} - \kappa x_t - \kappa (y_t^e - y_t^n)
\end{align*}
\]

\(\kappa (y_t^e - y_t^f) \) is a function of the shocks and of the structural parameters (microfounded). Stabilizing inflation is not sufficient for stabilizing the output gap, an **endogenous trade-off** emerges! **STRICT INFLATION TARGETING IS NOT OPTIMAL!**
Optimal Monetary Policy (II): Efficient Natural Equilibrium

- As Before assume that: \(y_t^n - y_t^e \) is not constant but varies over time
- The welfare relevant output gap is
 \[
 x_t \equiv y_t - y_t^e
 \]

- NKPC
 \[
 \pi_t = \beta E_t \{ \pi_{t+1} \} + \kappa x_t + u_t
 \]
 with \(u_t \equiv \kappa (y_t^e - y_t^n) \)
 \[\mapsto\] Endogenous Trade-off!

- Dynamic IS
 \[
 x_t = -\frac{1}{\sigma} (i_t - E_t \{ \pi_{t+1} \} - r_t^e) + E_t \{ x_{t+1} \}
 \]
 with \(r_t^e \equiv \rho + \sigma E_t \{ \Delta y_{t+1}^e \} \)
- **Simple Rule**
 \[i_t = \rho + \phi_\pi \pi_t \]

- **Equilibrium**
 Assume: (i) \(\{\Delta a_t\} \sim i.i.d. \rightarrow r_t^e = \rho \), (ii) \(\{u_t\} \sim i.i.d. \)
 \[\pi_t = \frac{\sigma}{\sigma + \kappa \phi_\pi} u_t \]
 \[x_t = -\frac{\phi_\pi}{\sigma + \kappa \phi_\pi} u_t \]

- **Loss Function**
 \[\alpha \text{var}(x_t) + \text{var}(\pi_t) \]

- **Optimal Rule:**
 \[\phi^*_\pi = \frac{\sigma \kappa}{\alpha} \]

- **Welfare loss:** \(\alpha \equiv \frac{\kappa}{\varepsilon} \quad \Rightarrow \quad \phi^*_\pi = \sigma \varepsilon \)
The Taylor Rule (Taylor 1993)

\[i_t = 4 + 1.5(\pi_t - 2) + 0.5y_t \]

Source: Taylor 1999
Clarida, Galì, Gertler (2000 QJE)

\[i_t = \rho i_{t-1} + (1 - \rho) \left[r + \pi^* + \beta E_t \{ \pi_{t+1} - \pi^* \} + \gamma \beta E_t \{ x_{t+1} \} \right] \]

<table>
<thead>
<tr>
<th>Baseline Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi^*)</td>
</tr>
<tr>
<td>Pre-Volcker</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Volcker-Greenspan</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Standard errors are reported in parentheses. The set of instruments includes four lags of inflation: output gap, the federal funds rate, the short-long spread, and commodity price inflation.