Outline

- 1 Lecture: A dynamic IS-LM model with the yield curve
- 2 Lecture: A dynamic IS-LM model with the stock market
- Mentorium: Output, the Stock Market and Interest Rates: effects of Fiscal and Monetary policy
- 3 Lecture: The dynamic theory of investment: set up of the problem
- 4 Lecture: The dynamic theory of investment: solution of the Abel model
- Mentorium: Effects of taxes, news and uncertainty on investment

Slides available at:
http://economia.unipv.it/pagp/pagine_personali/gascari/ascari_ff.htm
Introduction

Pricing a share

How do economists price an asset?

Price of an asset = present discounted value of expected returns
Stock Prices as Present Values

The Nominal Price (ex-dividend) of a Stock:

\[
\epsilon Q_t = \frac{\epsilon D_{t+1}^e}{1 + i_t} + \frac{\epsilon D_{t+2}^e}{(1 + i_t)(1 + i_{t+1}^e)} + \ldots
\]

- \(\epsilon D_t = \) Dividend this year
- \(\epsilon D_{t+1}^e = \) expected dividend next year

- Higher expected future dividends lead to a higher stock price.
- Higher current and expected future one-year interest rates lead to a lower stock price.

A dynamic IS-LM model with the stock market

Blanchard, AER, 1981 (same notation)
Simplified version in Bagliano and Bertola, p. 92-98
A dynamic IS-LM model with the stock mkt

AD => \[d(t) = a \cdot q(t) + \beta \cdot y(t) + g(t) \]
\[\beta < 1, \ a > 0 \]
- Aggregate demand now depends positively on \(q \)
- The stock prices affect investment => the Tobin \(q \) => the market valuation of the capital stock of the economy is incorporated in the level of stock prices
- Stock prices can also influence consumption (wealth effect => permanent income)

\[AD \]
\[LM \]
\[r(t) = c \cdot y(t) - h \cdot m(t) \quad c,h > 0 \]
\[AD \]
\[d(t) = a \cdot q(t) + \beta \cdot y(t) + g(t) \quad a>0, \ \beta<1 \]
\[\text{Output Dynamics} \]
\[y(t) = \sigma(d(t) - y(t)) \]
\[\text{Yield Curve} \]
\[R = \bar{R}(R - r) \]
A dynamic IS-LM model with the stock mkt

- Similar as before…but now we have 1 more vbl: q
- We need an equation for q to close the model
- Same reasoning as before for LR bonds:
 - Think about the (instantaneous) expected rate of return on holding a stock
 - Then arbitrage with SR bond

This equation implies that the price of a stock is equal to the present discounted value of future (expected) dividends

$$q(t_0) = \int_{t_0}^{\infty} \pi(t) e^{-\int_{t_0}^{s} r(s) ds} dt$$
A dynamic IS-LM model with the stock mkt

- **LM** => \(r(t) = c y(t) - h m(t) \quad c, h > 0 \)

- **Output Dynamics** (subs. \(d(t) \), and set \(b=1-\beta \)) =>
 \[
 y(t) = \sigma \left(a q(t) - b y(t) + g(t) \right)
 \]

- **Yield Curve** => \(R = \bar{R} (R - r) \)

- **Stock prices dynamics** =>
 \[
 r(t) = \frac{\alpha_0 + \alpha_1 y(t)}{q(t)} + \frac{q(t)}{q(t)}
 \]

A dynamic IS-LM model with the stock mkt

- As before substitute the static equations into the dynamic ones
- Substitute LM into stock prices dynamics eq.

\[
ct(t) - hm(t) = \frac{\alpha_0 + \alpha_1 y(t)}{q(t)} + \frac{q(t)}{q(t)}
\]
A dynamic IS-LM model with the stock mkt

- 2-equations dynamic system in the space
 \((q,y)\) which are the two endogenous vbls,
 and two policy instruments \((g,m)\)

\[
\begin{align*}
q(t) &= q(t) \left(cy(t) - hm(t) \right) - \left(\alpha_0 + \alpha_1 y(t) \right) \\
y(t) &= \sigma \left(aq(t) - by(t) + g(t) \right)
\end{align*}
\]

Building the phase diagram

- Find the **stationary loci**: lines so that the two
 vbls. do not move \(\Rightarrow \dot{y} = 0\) and \(\dot{q} = 0\)
- **Equilibrium** = crossing of the two loci
- Describe qualitatively the dynamics outside the
 stationary loci
- Find the **stable manifold** of the **saddle point**: 1
 forward-looking vbl an1 **backward-looking**
 vbl.
Stationary loci

- ‘Pseudo’-IS
 \[y = 0 \iff q(t) = \frac{1}{a} \left(by(t) - g(t) \right) = \frac{dq}{dy} = \frac{b}{a} > 0 \]

- ‘Pseudo’-LM
 \[q = 0 \iff q = \frac{\pi}{r} = \frac{\alpha_0 + \alpha_1 y}{cy-hm} \quad \frac{dq}{dy} = \frac{\alpha_1 - cq}{r} \begin{cases} > 0 & \text{ambiguous} \\
\end{cases} \]

The steady state value of \(q \) is given by the ratio of dividends to the interest rate and both are affected by output. As \(y \) increases, profits and dividends increase, raising \(q \), but also the interest rate (at which profits are discounted) increases, with a depressing effect on stock prices. The slope of the stationary locus for \(q \) then depends on the relative strength of those two effects.

- 2 cases
 - **Good news** \(\Rightarrow \alpha_1 - cq > 0 \Rightarrow \) positive slope
 - **Bad news** \(\Rightarrow \alpha_1 - cq < 0 \Rightarrow \) negative slope
Expansionary Monetary Policy: unanticipated and permanent
Expansionary Monetary Policy: unanticipated and permanent

A. Bad News

B. Good News

In the case of good news, bond and equity prices go in opposite directions along the adjustment path.

Expansionary Monetary Policy: anticipated and permanent

A. Bad News

B. Good News
Expansionary Monetary Policy: anticipated and permanent

A. Bad News

In the case of good news, bond and equity prices go in opposite directions after the implementation of the policy.

Expansionary Fiscal Policy: anticipated and permanent

ANTI-KEYNESIAN EFFECTS OF FISCAL POLICY
Expansionary Fiscal Policy: anticipated and permanent

A. Bad News

B. Good News

\[\frac{1}{R} = \text{bond price} \]