A Model of Unconventional Monetary Policy

Mark Gertler and Peter Karadi

NYU

April 2009
(This Version, November 2009)

Abstract

We develop a quantitative monetary DSGE model with financial intermediaries that face endogenously determined balance sheet constraints. We then use the model to evaluate the effects of the central bank using unconventional monetary policy to combat a simulated financial crisis. We interpret unconventional monetary policy as expanding central bank credit intermediation to offset a disruption of private financial intermediation. The primary advantage the central bank has over private intermediaries is that it can elastically obtain funds by issuing riskless government debt. During the crisis, the balance sheet constraints on private intermediaries tighten, raising the net benefits from central bank intermediation. We find that the welfare benefits from this policy may be substantial if the relative efficiency costs of central bank intermediation are modest. Further, in a financial crisis there are benefits from credit policy even if the nominal interest has not reached the zero lower bound. In the event the zero lower bound constraint is binding, however, the net benefits from credit policy may be significantly enhanced.
1 Introduction

Over most of the post-war period the Federal Reserve conducted monetary policy by manipulating the Federal Funds rate in order to affect market interest rates. It avoided lending directly in private credit markets, other than to supply discount window loans to commercial banks. Even then, it limited discount window activity to loans secured by government Treasury Bills.

After the onset of the subprime crisis in August 2007, the situation changed dramatically. To address the deterioration in both financial and real activity, the Fed directly injected credit into private markets. It began in the fall of 2007 by expanding the range of eligible collateral for discount window loans to include agency debt and high grade private debt. It did so in conjunction with extending the maturity of these types of loans and with extending eligibility to investment banks. Since that time, the Fed has set up a myriad of lending facilities.

The most dramatic interventions came following the collapse of Lehman Brothers, when the Fed began directly lending in high grade credit markets. It provided backstop funding to help revive the commercial paper market. It also intervened heavily in mortgage markets by directly purchasing agency debt and mortgage-backed securities. There is some evidence to suggest that these policies have been effective in reducing credit costs. Commercial paper rates relative to similar maturity Treasury Bills fell dramatically after the introduction of backstop facilities in this market. Credit spreads for agency debt and mortgage-backed securities also fell in conjunction with the introduction of the direct lending facilities.

The Fed’s balance sheet provides the most concrete measure of its credit market intervention: Since August 2007 the quantity of assets it has held has increased from about eight hundred billion to over two trillion, with most of the increase coming after the Lehman collapse. It financed the balance sheet expansion largely with interest bearing reserves, which are in effect overnight government debt. Thus, over this period the Fed has attempted to offset the disruption of a considerable fraction of private financial intermediation by expanding central bank intermediation. To do so, it has exploited its ability to raise funds quickly and cheaply by issuing (in effect) riskless government debt. Overall, the Fed’s unconventional balance sheet operations appeared to provide a way for it to stimulate the economy even after the Federal Funds reached the zero lower bound.
At the same time, operational models of monetary policy have not kept pace with the dramatic changes in actual practice. There is of course a lengthy contemporary literature on quantitative modeling of conventional monetary policy, beginning with Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2007). The baseline versions of these models, however, assume frictionless financial markets. They are thus unable to capture financial market disruptions that could motivate the kind of central bank interventions in loan markets that are currently in play. Similarly, models which do incorporate financial market frictions, such as Bernanke, Gertler and Gilchrist (1999) or Christiano, Motto and Rostagno (2005) have not yet explicitly considered direct central bank intermediation as a tool of monetary policy. Work that has tried to capture this phenomenon has been mainly qualitative as opposed to quantitative (e.g., Kiyotaki and Moore (2008), Adrian and Shin (2008)). Accordingly, the objective of this paper is to try to fill in this gap in the literature: the specific goal is develop a quantitative macroeconomic model where it is possible to analyze the effects of unconventional monetary policy in the same general manner that existing frameworks are able to study conventional monetary policy.

To be clear, we do not attempt to explicitly model the sub-prime crisis. However, we do try to capture the key elements relevant to analyzing the Fed’s credit market interventions. In particular, the current crisis has featured a sharp deterioration in the balance sheets of many key financial intermediaries. As many observers argue, the deterioration in the financial positions of these institutions has had the effect of disrupting the flow of funds between lenders and borrowers. Symptomatic of this disruption has been a sharp rise in various key credit spreads as well as a significant tightening of lending standards. This tightening of credit, in turn, has raised the cost of borrowing and thus enhanced the downturn. The story does not end here: The contraction of the real economy has reduced asset values throughout, further weakening intermediary balance sheets, and so on. It is in this kind of climate, that the central bank has embarked on its direct lending programs.

To capture this kind of scenario, accordingly we incorporate financial intermediaries within an otherwise standard macroeconomic framework. To motivate why the condition of intermediary balance sheets influences the overall flow of credit, we introduce a simple agency problem between intermediaries and their respective depositors. The agency problem introduces endogenous constraints on intermediary leverage ratios, which have the ef-
fect of tying overall credit flows to the equity capital in the intermediary sector. As in the current crisis, a deterioration of intermediary capital will disrupt lending and borrowing in a way that raises credit costs.

To capture unconventional monetary policy in this environment, we allow the central bank to act as intermediary by borrowing funds from savers and then lending them to investors. Unlike private intermediaries, the central bank does not face constraints on its leverage ratio. There is no agency problem between the central bank and its creditors because it can commit to always honoring its debt (which is we noted earlier is effectively government debt.) Thus, in a period of financial distress that has disrupted private intermediation, the central bank can intervene to support credit flows. On the other hand, we allow for the fact that, everything else equal, public intermediation is likely to be less efficient than the private intermediation. When we use the model to evaluate these credit interventions, we take into account this trade-off.

Section 2 presents the baseline model. The framework is closely related to the financial accelerator model developed by Bernanke, Gertler and Gilchrist (BGG, 1999). That approach emphasized how balance sheet constraints could limit the ability of non-financial firms to obtain investment funds. Firms effectively borrowed directly from households and financial intermediaries were simply a veil. Here, as we discussed, financial intermediaries may be subject to endogenously determined balance sheet constraints. In addition, we allow for the central bank to lend directly to private credit markets.

Another difference from BGG is that, we use as a baseline framework the conventional monetary business cycle framework developed by Christiano, Eichenbaum and Evans (CEE, 2005), Smets and Wouters (SW, 2007) and others. We adopt this approach because this framework has proven to have reasonable empirical properties. Here we use it to study not only conventional interest policy but also unconventional credit market interventions by the central bank.

Section 3 presents a quantitative analysis of the model. We illustrate how financial factors may amplify and propagate some conventional disturbances. We also consider a disturbance to the underlying quality of intermediary assets (a “valuation shock”) and then show how this kind of disturbance could create a contraction in real activity that mirrors some of the basic features of the current crisis. We then illustrate the extent to which central bank credit interventions could moderate the downturn. Finally, we show the stabilization benefits from credit policy are magnified if the zero lower
bound on nominal interest rates is binding.

In section 4, we undertake a normative analysis of credit policy. We first solve for the optimal central credit intervention in crisis scenario considered in section 3. We do so under different assumptions about the efficiency costs of central bank intermediation. We then compute for each case the net welfare gains from the optimal credit market intervention. We find that so long as the efficiency costs are quite modest, the gains may be quite significant. As we discuss, this finding suggests a formal way to think about the central bank’s choice between direct credit interventions versus alternatives such as equity injections to financial intermediaries. Within our baseline model the two policies are equivalent if we abstract from the issue of efficiency costs. For certain types of lending, e.g. securitized high grade assets such as mortgage-backed securities, the costs of central bank intermediation might be relatively low. In this case, direct central bank intermediation may be justified. In other cases, e.g. C&I loans that requires constant monitoring of borrowers, central bank intermediation may be highly inefficient. In this instance, capital injections may be the preferred route. Concluding remarks are in section 5.

2 The Baseline Model

The core framework is the monetary DSGE model with nominal rigidities developed by CEE and SW. To this we add financial intermediaries that transfer funds between households and non-financial firms. An agency problem constrains the ability of financial intermediaries to obtain from households. Another new feature is a disturbance to the quality of capital. Absent financial frictions, this shock introduces only a modest decline in output, as the economy works to replenish the effective capital stock. With frictions in the intermediation process, however, the shock creates a significant capital loss in the financial sector, which in turn induces tightening of credit and a significant downturn. As we show, it is in this kind of environment that there is a potential role for central bank credit interventions.

There are five types of agents in the model: households, financial intermediaries, non-financial goods producers, capital producers, and monopolistically competitive retailers. The latter are in the model only to introduce nominal price rigidities. In addition, there is a central bank that conducts
both conventional and unconventional monetary policy. Without financial intermediaries the model is isomorphic to CEE and SW. As we show, though, the addition of financial intermediaries adds only a modest degree of complexity. It has, however, a substantial effect on model dynamics and associated policy implications.

We now proceed to characterize the basic ingredients of the model.

2.1 Households

There a continuum of identical households of measure unity. Each household consumes, saves and supplies labor. Households save by lending funds to competitive financial intermediaries and possibly also by lending funds to the government.

Within each household there are two types of members: workers and bankers. Workers supply labor and return the wages they earn to the household. Each banker manages a financial intermediary and similarly transfers any earnings back to household. The household thus effectively owns the intermediaries that its bankers manage. The deposits it holds, however, are in intermediaries that is does not own. Finally, within the family there is perfect consumption insurance. As we make clear in the next section, this simple form of heterogeneity within the family allows us to introduce financial intermediation in a meaningful way within an otherwise representative agent framework.

At any moment in time the fraction $1 - f$ of the household members are workers and the fraction f are bankers. Over time an individual can switch between the two occupations. In particular, a banker this period stays banker next period with probability θ, which is independent history (i.e., of how long the person has been a banker.) The average survival time for a banker in any given period is thus $\frac{1}{1-\theta}$. As will become clear, we introduce a finite horizon for bankers to insure that over time they do not reach the point where they can fund all investments from their own capital. Thus every period $(1 - \theta)f$ bankers exit and become workers. A similar number of workers randomly become bankers, keeping the relative proportion of each type fixed. Bankers who exit give their retained earnings to their respective household. The household, though, provides its new bankers with some start up funds, as we describe in the next sub-section.

Let C_t be consumption and L_t family labor supply. Then households preferences are given by
max \(E_t \sum_{i=0}^{\infty} \beta^i [\ln(C_{t+i} - hC_{t+i-1}) - \frac{\chi}{1+\varphi}L_{t+i}^{1+\varphi}] \) (1)

with \(0 < \beta < 1, 0 < h < 1 \) and \(\chi, \varphi > 0 \). As in CEE and SW we allow for habit formation to capture consumption dynamics. As in Woodford (2003) we consider the limit of the economy as it become cashless, and thus ignore the convenience yield to the household from real money balances.

Both intermediary deposits and government debt are one period real bonds that pay the gross real return \(R_t \) from \(t-1 \) to \(t \). In the equilibrium we consider, the instruments are both riskless and are thus perfect substitutes. Thus, we impose this condition from the outset. Thus, let \(B_t \) be the total quantity of short term debt the household acquires, \(W_t \), be the real wage, \(\Pi_t \) net payouts to the household from ownership of both non-financial and financial firms and, \(T_t \) lump sum taxes. Then the household budget constraint is given by

\[C_t = W_tL_t + \Pi_t + T_t + R_tB_t - B_{t+1} \] (2)

Note that \(\Pi_t \) is net the transfer the household gives to its members that enter banking at \(t \).

Let \(\varrho_t \) denote the marginal utility of consumption. Then the household’s first order conditions for labor supply and consumption/saving are standard:

\[\varrho_t W_t = \chi L_t^\varphi \] (3)

with

\[\varrho_t = (C_t - hC_{t-1})^{-1} - \beta h E_t (C_{t+1} - hC_t)^{-1} \]

and

\[E_t/\beta \Lambda_{t,t+1} R_{t+1} = 1 \] (4)

with

\[\Lambda_{t,t+1} \equiv \frac{\varrho_{t+1}}{\varrho_t} \]

2.2 Financial Intermediaries

Financial intermediaries lend funds obtained from households to non-financial firms. Let \(N_{jt} \) be the amount of wealth - or net worth - that a banker/intermediary
\(j \) has at the end of period \(t \); \(B_{jt} \) the deposits the intermediary obtains from households, \(S_{jt} \) the quantity of financial claims on non-financial firms that the intermediary holds and \(Q_t \) the relative price of each claim. The intermediary balance sheet is then given by

\[
Q_t S_{jt} = N_{jt} + B_{jt}
\]

For the time being, we ignore the possibility of the central bank supplying funds to the intermediary.

As we noted earlier, household deposits with the intermediary at time \(t \) pay the non-contingent real gross return \(R_{t+1} \) at \(t+1 \). Thus \(B_{jt} \) may be thought of as the intermediary’s debt and \(N_{jt} \) as its equity capital. Intermediary assets earn the stochastic return \(R_{kt+1} \) over this period. Both \(R_{kt+1} \) and \(R_{t+1} \) will be determined endogenously.

Over time, the banker’s equity capital evolves as the difference between earnings on assets and interest payments on liabilities:

\[
N_{jt+1} = R_{kt+1} Q_t S_{jt} - R_{t+1} B_{jt}
\]

Any growth in equity above the riskless return depends on the premium \(R_{kt+1} - R_{t+1} \) the banker earns on his assets, as well as his total quantity of assets, \(Q_t S_{jt} \).

Let \(\beta \Lambda_{t,t+i} \) be the stochastic discount the banker at \(t \) applies to earnings at \(t+i \). Since the banker will not fund assets with a discounted return less than the discounted cost of borrowing, for the intermediary to operate the following inequality must apply:

\[
E_t \beta \Lambda_{t, t+1+i} (R_{kt+1+i} - R_{t+1+i}) \geq 0 \quad \forall \ i \geq 0
\]

With perfect capital markets, the relation always holds with equality: the risk-adjusted premium is zero. With imperfect capital markets, however, the premium may be positive due to limits on the intermediary’s ability to obtain funds.

So long as the intermediary can earn a risk adjusted return that is greater than or equal to the return the household can earn on its deposits, it pays for the banker to keep building assets until exiting the industry. Accordingly,
the banker’s objective is to maximize expected terminal wealth, given by

\[V_{jt} = \max E_t \sum_{i=0}^{\infty} (1 - \theta) \theta^i \beta^i \Lambda_{t,t+1+i}(N_{jt+1+i}) \]

\[= \max E_t \sum_{i=0}^{\infty} (1 - \theta) \theta^i \beta^i \Lambda_{t,t+1+i}[(R_{kt+1+i} - R_{t+1+i})Q_{t+i}S_{jt+i} + R_{t+1+i}N_{jt+i}] \]

(8)

To the extent the discounted risk adjusted premium in any period, \(\beta^i \Lambda_{t,t+i}[(R_{kt+1+i} - R_{t+1+i}) \) is positive, the intermediary will want to expand its assets indefinitely by borrowing additional funds from households. To motivate a limit on its ability to do so, we introduce the following moral hazard/costly enforcement problem: at the beginning of the period the banker can choose to divert the fraction \(\lambda \) of available funds from the project and instead transfer those back to the household of which he or she is a member. The cost to the banker is that the depositors can force the intermediary into bankruptcy and recover the remaining fraction \(1 - \lambda \) of assets. However, it is too costly for the depositors to recover the fraction \(\lambda \) of funds that the banker diverted.

Accordingly, for lenders to be willing to supply funds to the banker, the following incentive constraint must be satisfied:

\[V_{jt} \geq \lambda Q_t S_{jt} \]

(9)

The left side is what the banker would lose by diverting a fraction of assets. The right side is the gain from doing so.

We can express \(V_{jt} \) as follows:

\[V_{jt} = v_t \cdot Q_t S_{jt} + \eta_t N_{jt} \]

(10)

with

\[v_t = E_t \{ (1 - \theta) \beta \Lambda_{t,t+1}(R_{kt+1} - R_{t+1}) + \beta \Lambda_{t,t+1} \theta x_{t,t+1} v_{t+1} \} \]

\[\eta_t = E_t \{ (1 - \theta) + \beta \Lambda_{t,t+1} \theta z_{t,t+1} \eta_{t+1} \} \]

(11)

where \(x_{t,t+i} \equiv Q_{t+i}S_{jt+i}/Q_t S_{jt} \), is the gross growth rate in assets between \(t \) and \(t + i \), and \(z_{t,t+i} \equiv N_{jt+i}/N_{jt} \) is the gross growth rate of net worth. The variable \(v_t \) has the interpretation of the expected discounted marginal gain to the banker of expanding assets \(Q_t S_{jt} \) by a unit, holding net worth \(N_{jt} \) constant, and while \(\eta_t \) is the expected discounted value of having another unity
of N_{jt}, holding S_{jt} constant. With frictionless competitive capital markets, intermediaries will expand borrowing to the point where rates of return will adjust to ensure v_t is zero. The agency problem we have introduced, however, may place limits on this arbitrage. In particular, as we next show, when the incentive constraints is binding, the intermediary’s assets are constrained by its equity capital.

Note first that we can express the incentive constraints as

$$\eta_t N_{jt} + v_t Q_t S_{jt} \geq \lambda Q_t S_{jt}$$

If this constraint binds, then the assets the banker can acquire will depend positively on his/her equity capital:

$$Q_t S_{jt} = \frac{\eta_t}{\lambda - v_t} N_{jt}$$

where ϕ_t ratio of privately intermediated assets to equity, which we will refer to as the (private) leverage ratio. Holding constant N_{jt}, expanding S_{jt} raises the bankers’ incentive to divert funds. The constraint (13) limits the intermediaries leverage ratio to the point where the banker’s incentive to cheat is exactly balanced by the cost. In this respect the agency problem leads to an endogenous capital constraint on intermediary’s ability to acquire assets.

Given $N_{jt} > 0$, the constraint binds only if $0 < v_t < \lambda$. In this instance, it is profitable for the banker to expand assets (since $v_t > 0$). Note that in this circumstance the leverage ratio that depositors will tolerate is increasing in v_t. The larger is v_t, the greater is the opportunity cost to the banker from being forced into bankruptcy. If v_t increases above λ, the incentive constraint does not bind: the franchise value of the intermediary always exceed the gain from diverting funds. In the equilibrium we construct below, under reasonable parameter values the constraint always binds.

We can now express the evolution of the banker’s net worth as

$$N_{jt+1} = [(R_{kt+1} - R_{t+1})\phi_t + R_{t+1}] N_{jt}$$

Note that the sensitivity of N_{jt+1} to the ex post realization of the excess return $R_{kt+1} - R_{t+1}$ is increasing in the leverage ratio ϕ_t. In addition, it follows that

$$z_{t,t+1} = N_{jt+1}/N_{jt} = (R_{kt+1} - R_{t+1})\phi_t + R_{t+1}$$
\[x_{t,t+1} = Q_{t+1}S_{jt+1}/Q_tS_t = (\phi_{t+1}/\phi_t)(N_{jt+1}/N_t) = (\phi_{t+1}/\phi_t)z_{t,t+1} \]

Importantly, all the components of \(\phi_t \) do not depend on firm-specific factors. Thus to determine total intermediary demand for assets we can sum across individual demands to obtain:

\[Q_tS_{It} = \phi_tN_t \] (15)

where \(S_{It} \) reflects the aggregate quantity of intermediary assets and \(N_t \) denotes aggregate intermediary capital. In the general equilibrium of our model, variation in \(N_t \) will induce fluctuations in overall asset demand by intermediaries. Indeed, a crisis will feature a sharp contraction in \(N_t \).

We can derive an equation of motion for \(N_t \), by first recognizing that it is the sum of the net worth of existing banker/intermediaries, \(N_{et} \), and the net worth of entering (or "new") bankers, \(N_{nt} \).

\[N_t = N_{et} + N_{nt} \] (16)

Since the fraction \(\theta \) of bankers at \(t - 1 \) survive until \(t \), \(N_{et} \) is given by

\[N_{et} = \theta[(R_{kt} - R_t)\phi_t + R_t]N_{t-1} \] (17)

Observe that the main source of variation in \(N_{et} \) will be fluctuations in the ex post return on assets \(R_{kt} \). Further, the impact on \(N_{et} \) is increasing in the leverage ratio \(\phi_t \).

As we noted earlier, newly entering bankers receive "start up" funds from their respective households. We suppose that the startup money the household gives to its new banker as a transfer equals to a small fraction of the value of assets that exiting bankers had intermediated in their final operating period. The rough idea is that how much the household feels that its new bankers need to start, depends on the scale of the assets that the exiting bankers have been intermediating. Given that the exit probability is i.i.d., the total final period assets of exiting bankers at \(t \) is \((1 - \theta)Q_tS_{t-1}\). Accordingly we assume that each period the household transfers the fraction \(\omega/(1 - \theta) \) of this value to its entering bankers. Accordingly, in the aggregate,

\[N_{nt} = \omega Q_tS_{t-1} \] (18)
Combining (17) and (18) yields the following equation of motion for \(N_t \).

\[N_t = \theta [(R_{kt} - R_t)\phi_t + R]N_{t-1} + \omega Q_tS_{t-1} \]

Observe that \(\omega \) helps pin down the steady state leverage ratio \(QS/N \). Indeed, in the next section we calibrate \(\omega \) to match this evidence. The resulting value, as we show, is quite small.

2.3 Credit Policy

In the previous section we characterized how the total value of privately intermediated assets, \(Q_tS_{pt} \), is determined. We now suppose that the central bank is willing to facilitate lending. Let \(Q_tS_{gt} \) be the value of assets intermediated via government assistance and let \(Q_tS_t \) be the total value of intermediated assets: i.e.,

\[Q_tS_t = Q_tS_{pt} + Q_tS_{gt} \]

(19)

To conduct credit policy, the central bank issues government debt to households that pays the riskless rate \(R_{t+1} \) and then lends the funds to non-financial firms at the market lending rate \(R_{kt+1} \). We suppose that government intermediation involves efficiency costs: In particular, the central bank credit involves an efficiency cost of \(\tau \) per unit supplied. This deadweight loss could reflect the costs of raising funds via government debt. It might also reflect costs to the central bank of identifying preferred private sector investments. On the other hand, the government always honors its debt: Thus, unlike the case with private financial institutions there is no agency conflict than inhibits the government from obtaining funds from households. Put differently, unlike private financial intermediation, government intermediation is not balance sheet constrained.

An equivalent formulation of credit policy involves having the central bank channel funds to non-financial borrowers via private financial intermediaries, as occurred with depository facilitates set up prior to the Lehman collapse. Though, under this formulation, we assume that the government has an advantage over private households in enforcing payment of debts by private intermediaries. In particular, it is not possible for an intermediary to walk away from a financial obligation to the federal government, the same way it can from a private entity. Unlike private creditors, the federal government has various means to track down and recover debts. It follows that the
balance sheet constraints that limit intermediaries' ability to obtain private credit do not constrain their ability to obtain central bank credit. Accordingly, in this scenario, after obtaining funds from households at the rate R_{t+1}, the central bank lends freely to private financial intermediaries at the rate R_{kt}, which in turn lend to non-financial firms at the same rate. Private intermediaries earn zero profits on this activity: the liabilities to the central bank perfectly offset the value of the claims on non-financial firms, implying that there is no effect on intermediary balance sheets. The behavior of the model is thus exactly same as if the central bank directly lends to non-financial firms. Note that in this instance, the efficiency cost τ is interpretable as the cost of publicly channeling funds to private intermediaries as opposed to directly to non-financial firms. We note, however, that the bulk of the Fed’s lending programs involved direct provision of credit, as we model in our baseline formulation.

Accordingly, suppose the central bank is willing to fund the fraction ψ_t of intermediated assets: i.e.,

$$Q_{tS_{gt}} = \psi_t Q_{tS_t}$$

(20)

It issues amount of government bonds B_{gt}, equal to $\psi_t Q_{tS_t}$ to funds this activity. It’s net earnings from intermediation in any period t thus equals $(R_{kt+1} - R_{t+1})B_{gt}$. These net earnings provide a source of government revenue and must be accounted for in the budget constraint, as we discuss later.

Since privately intermediated funds are constrained by intermediary net worth, we can rewrite equation (19) to obtain

$$Q_{tS_t} = \phi_t N_t + \psi_t Q_{tS_t}$$

$$= \phi_{ct} N_t$$

where ϕ_t is the leverage ratio for privately intermediated funds (see equations (13) and (15), and where ϕ_{ct} is the leverage ratio for total intermediated funds, public as well as well private.

$$\phi_{ct} = \frac{1}{1 - \psi_t} \phi_t$$

Observe that ϕ_{ct} depends positively on the intensity of credit policy, as measured by ψ_t. Later we describe how the central bank might choose ψ_t to combat a financial crisis.
2.4 Intermediate Goods Firms

We next turn to the production and investment side of the model economy. Competitive non-financial firms produce intermediate goods that are eventually sold to retail firms. The timing is as follows: at the end of period t, an intermediate goods producer acquires capital K_{t+1} for use in production in the subsequent period. After production in period $t+1$, the firm has the option of selling the capital on the open market. There are no adjustment costs at the firm level. Thus, the firm’s capital choice problem is always static, as we discuss below.

The firm finances its capital acquisition each period by obtaining funds from intermediaries. To acquire the funds to buy capital, the firm issues S_t claims equal to the number of units of capital acquired K_{t+1} and prices each claim at the price of a unit of capital Q_t. That is, Q_tK_{t+1} is the value of capital acquired and Q_tS_t is the value of claims against this capital. Then by arbitrage:

$$Q_tK_{t+1} = Q_tS_t$$ (21)

We assume that there are no frictions in the process of non-financial firms obtaining funding from intermediaries. The intermediary has perfect information about the firm and has no problem enforcing payoffs. This contrasts with the process of the intermediary obtaining funding from households. Thus, within our model, only intermediaries face capital constraints on obtaining funds. These constraints, however, affect the supply of funds available to non-financial firms and hence the required rate of return on capital these firms must pay. Conditional on this required return, however, the financing process is frictionless for non-financial firms. The firm is thus able to offer the intermediary a perfectly state-contingent security, which is best though of as equity (or perfectly state-contingent debt.)

At each time t, the firm produces output Y_t, using capital and labor L_t, and by varying the utilization rate of capital, U_{t+1}. Let A_t denote total factor productivity and let ξ_t denote the quality of capital (so that ξ_tK_t is the effective quantity of capital at time t). Then production is given by:

$$Y_t = A_t(U_t\xi_tK_t)^\alpha L_t^{1-\alpha}$$ (22)

Following Merton (1973) and others, the shock ξ_t is meant to provide a simple source of exogenous variation in the value of capital. In the context of the
model, it corresponds to economic depreciation (or obsolescence) of capital.\footnote{Brunnermeier and Sannikov (2009) makes use of a similar kind of shock in a macroeconomic model with financial frictions.} We emphasize though, that the market value of an effective unit of capital Q_t is determined endogenously as we show shortly.

Let P_{mt} be the price of intermediate goods output. Assume further that the replacement price of used capital is fixed at unity. Then at time t, the firm chooses the utilization rate and labor demand as follows:

\begin{equation}
P_{mt} \frac{Y_t}{U_t} = \delta'(U_t) \xi_t K_t
\end{equation}

\begin{equation}
P_{mt}(1 - \alpha) \frac{Y_t}{L_t} = W_t
\end{equation}

Given that the firm earns zero profits state by state, it simply pays out the ex post return to capital to the intermediary. Accordingly R_{kt+1} is given by

\begin{equation}
R_{kt+1} = \frac{P_{mt+1} \alpha \frac{Y_{t+1}}{K_{t+1}} + (Q_{t+1} - \delta(U_{t+1}))\xi_{t+1}}{Q_t}
\end{equation}

Given that the replacement price of capital that has depreciated is unity, then the value of the capital stock that is left over is given by $(Q_{t+1} - \delta(U_t))\xi_{t+1} K_{t+1}$. Observe that the valuation shock ξ_{t+1} provides a source of variation in the return to capital.

\subsection{2.5 Capital Producing Firms}

At the end of period t, competitive capital producing firms buy capital from intermediate goods producing firms and then repair depreciated capital and build new capital. They then sell both the new and re-furbished capital. As we noted earlier, the cost of replacing worn out capital is unity. The value of a unit of new capital is Q_t, as is the value of a unit of re-furbished capital. While there are no adjustment costs associated with refurbishing capital, we suppose that there are flow adjustment costs associated with producing new capital. We assume households own capital producers and are the recipients of any profits.

Let I_t be gross capital created, $I_{nt} \equiv I_t - \delta(U_t)\xi_t K_t$ be net capital created, and I_{ss} steady state investment. Then discounted profits for a capital
producer are given by.

\[\max E_t \sum_{\tau=t}^{\infty} \beta^\tau \Lambda_{t,\tau} \left\{ (Q_\tau - 1)I_{nt} - f \left(\frac{I_{nt} + I_{ss}}{I_{nt-1} + I_{ss}} \right) (I_{nt} + I_{ss}) \right\} \] (26)

with

\[I_{nt} \equiv I_t - \delta(U_t)\xi_t K_t \]

where \(f(1) = f'(1) = 0 \) and \(f''(1) > 0 \), and where \(\delta(U_t)\xi_t K_t \) is the quantity of capital refurbished. As in CEE, we allow for flow adjustment costs of investment, but restrict these costs to depend on the net investment flow. Note that because of the flow adjustment costs, the capital producer may earn profits outside of steady state. We assume that they rebate these profits lump sum back to households. Note also that all capital producers choose the same net investment rate. (For this reason, we do not index \(I_{nt} \) by producer type.

The first order condition for investment gives the follow ”Q” relation for net investment:

\[Q_t = 1 + f(\cdot) + \frac{I_{nt} + I_{ss}}{I_{nt-1} + I_{ss}} f'(\cdot) - \beta E_t \Lambda_{t,t+1} (\frac{I_{nt+1} + I_{ss}}{I_{nt} + I_{ss}})^2 f'(\cdot) \] (27)

2.6 Retail Firms

Final output \(Y_t \) is a CES composite of a continuum of mass unity of differentiated retail firms, that use intermediate output as the sole input. The final output composite is given by

\[Y_t = \left[\int_0^1 Y_{ft} \frac{1}{t-\varepsilon} df \right]^{\varepsilon-1} \] (28)

where \(Y_{ft} \) is output by retailer \(f \). From cost minimization by users of final output:

\[Y_{ft} = \left(\frac{P_{ft}}{P_t} \right)^{-\varepsilon} Y_t \] (29)

\[P_t = \left[\int_0^1 P_{ft} \frac{1}{t-\varepsilon} df \right]^{1-\varepsilon} \] (30)
Retailers simply re-package intermediate output. It takes one unit of intermediate output to make a unit of retail output. The marginal cost is thus the relative intermediate output price \(P_{mt} \). We introduce nominal rigidities following CEE. In particular, each firm period a firm is able to freely adjust price with probability \(1 - \gamma \). In between these periods, the firm is able to partially index its price to the lagged rate of inflation with the rate \(0 \leq \gamma_p \leq 1 \). The retailers pricing problem then is to choose the optimal reset price \(P^*_t \) to solve

\[
\max \sum_{i=0}^{\infty} \gamma^i \beta^i \Lambda_{t,i} \left[\frac{P^*_t}{P_{t+i}} \prod_{k=0}^{i} (1 + \pi_{t+i-1})^{\gamma_p} - P_{mt+i} \right] Y_{ft} \tag{31}
\]

where \(\pi_t \) is the rate of inflation from \(t - i \) to \(t \). The first order necessary conditions are given by:

\[
\sum_{i=0}^{\infty} \gamma^i \beta^i \Lambda_{t,i} \left[\frac{P^*_t}{P_{t+i}} \prod_{k=0}^{i} (1 + \pi_{t+i-1})^{\gamma_p} - \mu P_{mt+i} \right] Y_{ft} = 0 \tag{32}
\]

with

\[
\mu = \frac{1}{1 - 1/\varepsilon}
\]

From the law of large numbers, the following relation for the evolution of the price level emerges.

\[
P_t = \left[(1 - \gamma)(P^*_t)^{\frac{1}{\gamma_p}} + \gamma(\Pi_{t-1}^{\gamma_p} P_{t-1})^{\frac{1}{\gamma_p}} \right]^{1-\varepsilon} \tag{33}
\]

2.7 Resource Constraint and Government Policy

Output is divided between consumption, investment, government consumption, \(G_t \), and expenditures on government intermediation, \(\tau \psi_t Q_t K_{t+1} \). We suppose further that government expenditures are exogenously fixed at the level \(G \). The economy-wide resource constraint is thus given by

\[
Y_t = C_t + I_t + f \left(\frac{I_{nt} + I_{ss}}{I_{n,nt-1} + I_{ss}} \right) (I_{nt} + I_{ss}) + G + \tau \psi_t Q_t K_{t+1} \tag{34}
\]

where capital evolves according to
Government expenditures, further, are financed by lump sum taxes and government intermediation:

\[G + \tau \psi_t Q_t K_{t+1} = T_t + (R_k - R_t) B_{gt-1} \] \hspace{1cm} (35)

where government bonds, \(B_{gt-1} \), finance total government intermediated assets, \(Q_t \psi_{t-1} S_{t-1} \).

We suppose monetary policy is characterized by a simple Taylor rule with interest-rate smoothing. Let \(i_t \) be the net nominal interest rate, \(i \) the steady state nominal rate, and \(Y_t^* \) the natural (flexible price equilibrium) level of output. Then:

\[i_t = (1 - \rho)\bar{i} + \epsilon_t + \psi_t \pi_t + \tau_t (\log Y_t^* \log Y_t) + \rho \psi_{t-1} + \epsilon_t \] \hspace{1cm} (36)

where the smoothing parameter \(\rho \) lies between zero and unity, and where \(\epsilon_t \) is an exogenous shock to monetary policy, and where the link between nominal and real interest rates is given by the following Fisher relation

\[1 + i_t = R_{t+1} \frac{P_{t+1}}{P_t} \] \hspace{1cm} (37)

We suppose that the interest rate rule is sufficient to characterize monetary policy in normal times. In a crisis, however, we allow for credit policy. In particular, we suppose that at the onset of a crisis, which we define loosely to mean a period where credit spreads rise sharply, the central bank injects credit in response to movements in credit spreads, according to the following feedback rule:

\[\psi_t = \psi + \nu[[R_{kt+1} - R_{t+1}] - (R_k - R)] \] \hspace{1cm} (38)

where \(\psi \) is the steady state fraction of publicly intermediated assets and \(R_k - R \) is the steady state premium. In addition, the feedback parameter exceeds unity. According to this rule, the central bank expands credit as the spread increase relative to its steady state value.

In addition, we suppose that in a crisis the central bank abandons its proclivity to smooth interest rates. In this case it sets the smoothing parameter \(\rho \) equal to zero.

This completes the description of the model.
3 Model Analysis

3.1 Calibration

Table 1 lists the choice of parameter values for our baseline model. Overall there are eighteen parameters. Fifteen are conventional. Three \((\lambda, \omega, \theta)\) are specific to our model.

We begin with the conventional parameters. For the discount factor \(\beta\), the depreciation rate \(\delta\), the capital share \(\alpha\), the elasticity of substitution between goods, \(\varepsilon\), and the government expenditure share, we choose conventional values. Also, we normalize the steady state utilization rate \(u\) at unity. We use estimates from Justinano, Primiceri and Tambalotti (2006) to obtain values for the other conventional parameters, which include: the habit parameter \(h\), the elasticity of marginal depreciation with respect to the utilization rate, \(\zeta\), the inverse elasticity of net investment to the price of capital \(\eta_i\), the relative utility weight on labor \(\chi\), the Frisch elasticity of labor supply \(\phi^{-1}\), the price rigidity parameter, \(\gamma\), the price indexing parameter \(\gamma_p\), the feedback coefficients in the monetary policy rule, \(\kappa_\pi\) and \(\kappa_y\), and the smoothing parameter \(\rho\).\(^2\)

Our choice of the financial sector parameters - the fraction of capital that can be diverted \(\lambda\), the proportional transfer to entering bankers \(\omega\), and the survival probability \(\theta\) - is meant to be suggestive. We pick these parameters to hit the following three targets: a steady state interest rate spread of one hundred basis points; a steady state leverage ratio of four; and an average horizon of bankers of a decade. We base the steady state target for the spread on the pre-2007 spreads between mortgage rates and government bonds and between BAA corporate vs. government bonds. The choice of the leverage ratio is a rough guess of a reasonable economy-wide mortgage. For the mortgage sector, which was about one third of total assets in 2007, this ratio was between twenty and thirty to one. It was obviously much smaller in other sectors.

\(^2\)The JPT model does not include financial market frictions but was estimated on postwar data prior to the current crisis, where these factors were less important. Hence estimates for the non-financial parameters are likely to be reasonable for our purposes.
3.2 Experiments

We begin with several experiments designed to illustrate how the model behaves. We then consider a "crisis" experiment that mimics some of the basic features of the current downturn. We then consider the role of central bank credit policy in moderating the crisis. Finally, we explore the implications of the zero lower bound on nominal interest rates.

Figure 1 shows the response of the model economy to three disturbances: a technology shock, a monetary shock, and shock to intermediary net worth. In each case, the direction of the shock is set to produce a downturn. The figure then shows the responses of three key variables: output, investment and the premium. In each case the solid line shows the response of the baseline model. The dotted line gives the response of the same model, but with the financial frictions removed.

The technology shock is a negative one percent innovation in TFP, with a quarterly autoregressive factor of 0.95. The intermediary balance mechanism produces a modest amplification of the decline in output the baseline model relative to the conventional DSGE model. The amplification is mainly the product of substantially enhanced decline in investment: on the order of fifty percent relative to the frictionless model. The enhanced response of investment in the baseline model is a product of the rise in the premium, plotted in the last panel on the right. The unanticipated decline in investment reduces asset prices, which produces a deterioration in intermediary balance sheets, pushing up the premium. The increase in the cost of capital, further reduces capital demand by non-financial firms, which enhances the downturn in investment and asset prices. In the conventional model without financial frictions, of course, the premium is fixed at zero.

The monetary shock is an unanticipated twenty-five basis point increase in the short term interest rate. The effect on the short term interest rate persists due to interest rate smoothing by the central bank. Financial frictions lead to greater amplification relative to the case of the technology shock. This enhanced amplification is due to the fact that, everything else equal, the monetary policy shock has a relatively large effect on investment and asset prices. The latter triggers the financial accelerator mechanism.

To illustrate how at the core of the amplification mechanism in the first two experiments is procyclical variation in intermediary balance sheets, we consider a redistribution of wealth from intermediaries to households. In particular, we suppose that intermediary net worth declines by one percent and
is transferred to households. In the model with no financial frictions, this redistribution has no effect (it is just a transfer of wealth within the family.) The decline in intermediary net worth in our baseline model, however, produces a rise in the premium, leading to a subsequent decline in output and investment.

We now turn to the crisis experiment. The initiating disturbance is a decline in capital quality. What we are trying to capture, is a shock to the quality of intermediary assets that produce an enhanced decline in the capital of these institutions, due to their high degree of leverage. In this rough way, we capture the broad dynamics of the sub-prime crises. It’s best to think of this shock as a rare event. Conditional on occurring, however, it obeys an AR(1) process.

We fix the size of the shock so that the downturn is of broadly similar magnitude to the one we have recently experienced. The initiating shock is a five percent decline in capital quality, with a quarterly autoregressive factor of 0.66. Absent any changes in investment, the shock produces a roughly ten percent decline in the effective capital stock over a two year period. The loss in value of the housing stock relative to the total capital stock was in this neighborhood.

We first consider the disturbance to the economy without credit policy and then illustrate the effects of credit policy. For the time being, we ignore the constraint imposed by the zero lower bound on the nominal interest, but then turn to this consideration.

As Figure 2 illustrates, in the model without financial frictions, the shock produces only a modest decline in output. Output falls a bit initially due to the reduced effective capital stock. Because capital is below its steady state, however, investment picks up. Individuals consume less and eventually work more.

By contrast, in the model with frictions in the intermediation process, there is a sharp recession. The deterioration in asset quality produces a magnified decline in intermediary capital. The interest rate spread skyrockets as a consequence, and output tanks. Output initially falls about three percent relative to trend and then decreases to about six percent relative to trend. Though the model does not capture the details of the recession, it does produce an output decline of similar magnitude. Recovery of output to trend does not occur until roughly five years until after the shock. This slow recovery is also in line with current projections. Contributing to the slow recovery is the delayed movement of intermediary capital back to trend. It is
mirrored in persistently above trend movement in the spread. Note that over this period the intermediary sector is effectively deleveraging: it is building up equity relative to assets. Thus the model captures formally the informal notion of how the need for financial institutions to deleverage can slow the recovery of the economy.

We now consider credit interventions by the central bank. Figure 3 considers several different intervention intensities. In the first case, the feedback parameter \(\nu \) in the policy rule given by equation (38) equals 10. At this value, the credit intervention is roughly of similar magnitude to what has occurred in proactive. The solid line portrays this case. In the second, the feedback parameter is raised to 100, which increases the intensity of the response, bringing it closer to the optimum (as we show in this section). The dashed line portrays this case. Finally, for comparison, the dashed and dotted line portrays the case with no credit market intervention.

In each instance, the credit policy significantly moderates the contraction. The prime reason is that central intermediation dampens the rise in the spread, which in turn dampens the investment decline. The moderate intervention \((\nu = 10)\) produces an increase in the central bank balance sheet equal to approximately seven percent of the value of the capital stock. This is roughly in accord with the degree of intervention that has occurred in practice. The aggressive intervention further moderates the decline. It does so by substantially moderating the rise in the spread. Doing so, however, requires that central bank lending increase to approximately fifteen percent of the capital stock.

Several other points are worth noting. First, in each instance the central bank exits from its balance sheet slowly over time. In the case of the moderate intervention the process takes roughly five years. It takes roughly three time longer in the case of the aggressive intervention. Exit is associating with private financial intermediaries re-capitalizing. As private intermediaries build up their balance sheets, they are able to absorb assets off the central banks’ balance sheet.

Second, despite the large increase in the central bank’s balance sheet in response to the crisis, inflation remains largely benign. The reduction in credit spreads induced by the policy provides sufficient stimulus to prevent a deflation, but not enough to ignite high inflation. Here it is important to kept in mind that the liabilities the central bank issues are government debt (financed by private assets), as opposed to unbacked high-powered money.

Next we turn to the issue of the zero lower bound on nominal interest
The steady state short term nominal interest rate is four hundred basis points. As Figure 2 shows, in the baseline crisis experiment, the nominal rate drops more than five hundred basis points, which clearly violates the zero lower bound on the nominal rate.

In Figure 4 we re-create the crisis experiment, this time imposing the constraint that the net nominal rate cannot fall below zero. As the figure illustrates, with this restriction, the output decline is roughly twenty-five percent larger than in the case without. The limit on the ability to reduce the nominal rate to offset the contraction leads to an enhanced output decline. Associated with the magnified contraction is greater financial distress, mirrored by a larger movement in the spread.

In Figure 5 we re-consider the credit policy experiments, this time taking explicitly into account the zero lower bound restriction. As the figure makes clear, the relative gains from the credit polices are enhanced in this scenario.

3.3 Optimal Policy and Welfare

We now consider the welfare gains from central bank credit policy and also compute the optimal degree of intervention. We take as the objective the household’s utility function.

We start with the crisis scenario of the previous section. We take as given the Taylor rule (without interest rate smoothing) for setting interest rates. This rule may be thought of as describing monetary policy in normal times. We suppose that it is credit policy that adjusts to the crisis. We then ask what is the optimal choice of the feedback parameter ν in the wake of the capital quality shock. In doing the experiment, we take into account the efficiency costs of central bank intermediation, as measured by the parameter τ. We consider a range of values for τ.

Following Faia and Monacelli (2007), we begin by writing the household utility function in recursive form:

$$\Omega_t = U(C_t, L_t) + \beta E_t \Omega_{t+1}$$ \hspace{1cm} (39)

We then take a second order approximation of this function about the steady state. We next take a second order approximation of the whole model about the steady state and then use this approximation to express the objective.

\footnote{For recent analyses of the zero lower bound see Eggertsson and Woodford (2003) and Christiano, Eichenbaum and Rebelo (2009).}
as a second order function of the predetermined variables and shocks to the system. In doing this approximation, we take as given the policy-parameters, including the feedback credit policy parameter \(\nu \). We then search numerically for the value of \(\nu \) that optimizes \(\Omega_t \) as a response to the capital quality shock.

To compute the welfare gain from the optimal credit policy we also compute the value of \(\Omega_t \) under no credit policy. We then take the difference in \(\Omega_t \) in the two cases to find out how much welfare increases under the optimal credit policy. To convert to consumption equivalents, we ask how much the individuals consumption would have to increase each period in the no credit policy case to be indifferent with the case under the optimal credit policy. Because we are just analyzing a single crisis and not an on-going sequence, we simply cumulate to the present value of consumption-equivalent benefits and normalize by one year’s steady state consumption. Put differently, we suppose the economy is hit with a crisis and then ask what are the consumption-equivalent benefits from credit policy in moderating this single event. Since we are analyzing a single event, it makes sense to us to cumulate up the benefits instead of presenting them as an indefinite annuity flow, where most of the flow is received after the crisis is over.

Finally, we abstract from considerations of the zero lower bound in this draft (due to the complications from computing the second order approximation of the model in this case.) In this regard, our results understate the net benefits from credit policy.

Figure 6 presents the results for a range of values of the efficiency cost \(\tau \). In the baseline case with no efficiency cost \((\tau = 0)\), the benefit from credit policy of moderating the recession is worth roughly 6.50 percent of one years recession. At reasonable levels of the efficiency cost (e.g. ten basis points), the gain is on the order of 5.0 percent of steady state consumption. It decreases to zero, as the efficiency costs goes to eighty basis points, a fairly large number. Though we do not report the results here, for \(\tau \) less than forty basis points the optimal credit policy comes close to fully stabilizing the premium.

The net benefits from the credit policy go to zero when \(\tau \) reaches roughly sixty basis points. However, this would suggest central bank transactions costs equal to roughly six percent of gross assets intermediated, a number that is unrealistically large for high grade securities such as commercial paper and agency mortgage-backed securities. A number well less than one percent is probably more realistic. In this instance, our analysis suggests that net gains from responding to the crisis with credit policy are large.
4 Concluding Remarks

We developed a quantitative monetary DSGE model with financial intermediaries that face endogenously determined balance sheet constraints. We then used the model to evaluate the effects of expanding central bank credit intermediation to combat a simulated financial crisis. The primary advantage the central bank has over private intermediaries is that it can elastically obtain funds by issuing riskless government debt. During the crisis, the balance sheet constraints on private intermediaries tighten, raising the net benefits from central bank intermediation. We find that the welfare benefits from this policy may be substantial if the relative efficiency costs of central bank intermediation are modest.

Importantly, as we showed, in a financial crisis there are benefits to credit policy even if the nominal interest has not reached the zero lower bound. In the event the zero lower bound constraint is binding, however, the net benefits from credit policy may be significantly enhanced.

An alternative type of credit intervention in our model would be direct equity injections into financial intermediaries. Expanding equity in these institutions would of course expand the volume of assets that they intermediate. In our view, a key factor in choosing between equity injections and direct lending involves the relative efficiency cost of the policy action. For certain types of lending, e.g. securitized high grade assets such as mortgage-backed securities or commercial paper, the costs of central bank intermediation might be relatively low. In this case, direct central bank intermediation might be highly justified. In other cases, e.g. C&I loans that require constant monitoring of borrowers, central bank intermediation may be highly inefficient. In this instance, capital injections may be the preferred route. By expanding our model to allow for asset heterogeneity, we can address this issue.

It might also be interesting to think about capital requirements in this framework, following Lorenzoni (2009). Within our framework as within his, individual intermediaries do not account for the spillover effects of high leverage on the volatility of asset prices.

Finally, we consider a one time crisis and evaluated the policy response. In subsequent work we plan to model the phenomenon as an infrequently occurring rare disaster, in the spirit of Barro (2009). In this literature, the disaster is taken as a purely exogenous event. Within our framework, the magnitude of the disaster is endogenous. We can, however, use the same
tools as applied in this literature to compute welfare.
References

<table>
<thead>
<tr>
<th>Table 1: Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
</tr>
<tr>
<td>β 0.990</td>
</tr>
<tr>
<td>h 0.815</td>
</tr>
<tr>
<td>χ 3.409</td>
</tr>
<tr>
<td>φ 0.276</td>
</tr>
<tr>
<td>Financial Intermediaries</td>
</tr>
<tr>
<td>λ 0.381</td>
</tr>
<tr>
<td>ξ 0.002</td>
</tr>
<tr>
<td>θ 0.972</td>
</tr>
<tr>
<td>Intermediate good firms</td>
</tr>
<tr>
<td>α 0.330</td>
</tr>
<tr>
<td>u 1.000</td>
</tr>
<tr>
<td>$\delta(u)$ 0.025</td>
</tr>
<tr>
<td>ζ 7.200</td>
</tr>
<tr>
<td>Capital Producing Firms</td>
</tr>
<tr>
<td>η_i 1.728</td>
</tr>
<tr>
<td>Retail firms</td>
</tr>
<tr>
<td>ε 4.167</td>
</tr>
<tr>
<td>γ 0.779</td>
</tr>
<tr>
<td>γ_p 0.241</td>
</tr>
<tr>
<td>Government</td>
</tr>
<tr>
<td>κ_π 2.043</td>
</tr>
<tr>
<td>κ_X -0.50</td>
</tr>
<tr>
<td>ρ_i 0.8</td>
</tr>
<tr>
<td>γ 0.200</td>
</tr>
</tbody>
</table>
Figure 1: Responses to Technology (a), Monetary (m) and Wealth (w) Shocks
Figure 2: Responses to a Capital Quality Shock
Figure 3: Responses to a Capital Quality Shock with Credit Policy
Figure 4: Impulse responses to the capital quality shock with and without the zero lower bound (ZLB)
Figure 5: Impulse responses to the capital quality shock (-5%) with the zero lower bound (ZLB) with and without credit policy

![Impulse response plots](image-url)
Figure 6: One year consumption equivalent net welfare gains from optimal credit policy (Ω) and optimal credit policy coefficient (ν) as a function of efficiency costs τ