CONDI: A Cost-Of-Nominal-Distortions Index*

Stefano Eusepi
Federal Reserve Bank of New York

Bart Hobijn
Federal Reserve Bank of San Francisco

Andrea Tambalotti
Federal Reserve Bank of New York

January 2009

Abstract

We construct a price index for monetary policy, with weights on the prices of different PCE products chosen to minimize the welfare costs of nominal distortions: a cost-of-nominal-distortions index (CONDI). We compute these weights in a multi-sector New-Keynesian model with time-dependent price setting, calibrated using U.S. data on the sectorial dispersion of price stickiness, demand elasticity and the returns to labor. We find that the CONDI weights mostly depend on price stickiness and are less affected by the other sources of heterogeneity we consider. Moreover, CONDI stabilization leads to negligible welfare losses compared to the optimal policy and is better approximated by core rather than headline inflation targeting. An even better approximation of the CONDI can be obtained with an adjusted core index that covers total expenditures excluding autos, clothing, energy, and food at home, but that includes food away from home.

Keywords: core inflation, nominal rigidities, optimal monetary policy, price indexes.

JEL-code: E31, E52, E58

*We would like to thank Carlos Carvalho, Vasco Cúrdia, Gauti Eggertsson, Andrea Ferrero, Mark Gertler, Marc Giannoni, Marvin Goodfriend, Zheng Liu, Emi Nakamura, Federico Ravenna, Robert Rich, Ayşegül Şahin, Jón Steinsson and Michael Woodford for their comments and suggestions and Mark Bils for providing the data on markups from Bils and Klenow (2004). Ted Rosenbaum, Kristy Mayer and Peter Fielding provided excellent research assistance. Andrea Tambalotti thanks IGIER – Università Bocconi for its hospitality while conducting part of this research. The views expressed in this paper solely reflect those of the authors and not necessarily those of the Federal Reserve Bank of New York, the Federal Reserve Bank of San Francisco, or those of the Federal Reserve System as a whole.
1 Introduction

Core inflation is at the center of many central banks’ efforts to monitor and pursue price stability. At the Federal Reserve, this focus is well reflected by the inclusion of core PCE inflation—the change in the personal consumption expenditures (PCE) price index ex food and energy—among the four macroeconomic variables featured in the “Summary of Economic Projections” published by the FOMC four times a year.¹

On an informal level, the rationale for focusing on core inflation is that the prices of food and energy are among the most volatile components of headline inflation. Therefore, attempts to stabilize headline inflation in the face of shocks to non-core prices would require sharp movements in real activity. Moreover, this increased real volatility might also result in an increase, rather than a reduction, in inflation volatility, if the shocks to non-core prices tend to dissipate faster than the time it takes monetary policy to affect overall prices.²

This argument has been formally articulated in at least two ways. First, current core inflation is a better predictor of future headline inflation than current headline inflation itself (e.g. Blinder and Reis, 2005). This is a statistical statement of the informal idea that non core prices are “volatile.” If this statistical statement is true, central banks running an explicit—or implicit—form of inflation forecast targeting should pay close attention to core as an indicator of future inflationary pressures.³

The second argument in favor of focusing on core inflation as a guide for monetary policy comes from New Keynesian theory. In an economy in which prices change only infrequently, and do so at different rates for different goods, the central bank should concentrate more on the stabilization of inflation in the goods with stickier prices, since it is in their production that the real distortions caused by price dispersion are larger. This principle was first illustrated by Aoki (2001) in a two-good economy in which one good has perfectly flexible prices. In this case, the monetary authority should focus exclusively on stabilizing inflation in the sticky price (core) good. Benigno (2004) showed that a similar result holds in a multi-good case with an arbitrary distribution of price stickiness across goods.⁴

In practice, these theoretical results are usually interpreted as implying that central banks should

¹ The other variables are headline PCE inflation, GDP growth and unemployment.
² For an extremely clear statement of this reasoning from the perspective of a policymaker see Mishkin (2007)
³ This statistical underpinning for the role of core inflation in policymaking has recently received much scrutiny in the literature and in the policy debate (Rich and Steindel, 2007; Crone et al., 2008; Kiley, 2008 and Buiter, 2008).
⁴ Benigno (2004) casts his analysis in an international context, with many heterogenous Countries in a monetary union, rather than many heterogenous sectors in a closed economy. The two interpretations of his analysis are formally identical, as observed by Woodford (2003).
target core inflation (e.g. Mishkin, 2007; Plosser, 2008), since the prices of non core goods tend to be more flexible than those of other goods and services.\(^5\)

In this paper, we revisit quantitatively the theoretical argument in support of core inflation targeting, in light of the recent detailed microeconomic evidence on the frequency of price adjustment presented by Nakamura and Steinsson (2008a, NS in what follows). We also study the robustness of this argument to the presence of heterogeneity in labor shares across goods-producing sectors, another potentially important source of asymmetric distortions, even when all sectors share the same degree of nominal rigidity.\(^6\) Our analysis proceeds in three steps.

First, we construct a database with measures of price stickiness and labor shares across PCE categories, at two levels of aggregation. At the coarser level of aggregation, we only distinguish between non-core goods, which include food and energy, and core goods, which include everything else. At the finer level of aggregation, we consider fifteen “major types of products”, such as motor vehicles and parts, food at home and away from home, housing, and medical care. We also consider the baseline case of one homogeneous good. The construction of this database is one of the contributions of the paper, since comprehensive measures of the degree of heterogeneity in the production of personal consumption goods and in their price flexibility were not previously available.

For price stickiness, our primary source is NS, whose data refers to the frequency of price adjustment for the 273 entry level items (ELIs) in the non-shelter component of the Consumer Price Index (CPI). This data covers about 70 percent of CPI expenditures, but it excludes entirely housing services (rent and owner’s equivalent rent) and a large fraction of PCE medical care. To extend this partial evidence on CPI items to cover all the fifteen major PCE products at our finer level of aggregation, we supplement it with evidence from Genesove (2003) on the degree of nominal rigidity in housing rents. Moreover, we use evidence on medical care services in the Producer Price Index to refine the estimate of price stickiness in medical care implied by NS’ numbers. Finally, we reflate the CPI expenditure shares of the products we consider to reflect those in the PCE.

As for labor shares, we compute them applying the method proposed by Valentinyi and Herrendorf (2008) to the major PCE products in our database. This method is particularly suitable to the task,

5 In the New Keynesian model based on Calvo (1983) pricing, more flexible prices result in a more volatile inflation rate, at least under plausible assumptions on the behavior of marginal cost (Bils and Klenow, 2004). In this respect, the theoretical underpinning for core inflation targeting just described could be interpreted as another variant of the informal “volatility” argument we sketched above.

6 In the model we present, each sector produces one (composite) good. Therefore in what follows we use the words sector, good and product interchangeably.
because it allows to construct input shares for the components of final demand, such as consumption, taking into account the input-output structure of the U.S. economy.

The second step of our analysis is the construction of a Cost-of-Nominal-Distortions Index (CONDI). The CONDI is a Tornqvist (1936) price index—a weighted average of inflation rates—that weighs inflation in different goods as a function of the share of overall nominal distortions associated with the production of each good. This is in contrast to a cost-of-living index (COLI), such as the PCE, which weights goods by their expenditure share. To quantify the contribution of each consumption sector to overall distortions, we calibrate a multi-sector extension of the textbook New Keynesian model to the evidence on sectorial heterogeneity discussed above. In this framework, we define the CONDI as the linear combination of inflation rates whose stabilization maximizes the welfare of the model’s representative agent, as in Benigno (2004).

Finally, the third step of the analysis is to compare the performance of CONDI stabilization to that of the unconstrained optimal policy, as well as to other, more familiar, approaches to monetary policy. In particular, we focus our attention on two strict inflation targeting strategies, the stabilization of headline and of core PCE inflation (i.e. PCE ex food and energy). This comparison provides a quantitative theoretical underpinning for a discussion of the relative merits of monetary policies that aim to stabilize different types of inflation.

Three main results emerge from our quantitative analysis. First, the optimal weights in the CONDI depend largely on sectorial heterogeneity in price stickiness, and only marginally on variation in preferences and technology, as reflected by labor shares. This finding confirms the robustness of the basic principle that monetary policy should put more emphasis on the stabilization of inflation in sectors with more rigid prices. More specifically, among non-core expenditures, the CONDI attributes almost no weight to the very flexible prices of energy goods and of food purchased for consumption at home, but a large weight to “food away from home.” At the same time, two categories that are part of core, but whose prices are very flexible, receive little weight in the CONDI: “motor vehicles” and “clothing and shoes.”

Second, CONDI stabilization provides an excellent approximation to the unconstrained optimal policy. In fact, the outcomes of the two policies are virtually indistinguishable in terms of welfare. Moreover, core PCE stabilization is a better policy than headline PCE stabilization, because core inflation on net readjusts the expenditure weights on sectorial inflation rates in a direction similar to
the CONDI. In fact, the ex-post time series of CONDI inflation, built with the optimal weights and the historical realization of sectorial prices, is highly correlated with core PCE inflation over the period from 1998 to 2006, but only moderately so with headline inflation.

Third, core inflation targeting is only a very rough approximation of CONDI stabilization in terms of welfare. However, this approximation can be improved through a simple reclassification of major products across the core and non-core aggregates. In particular, this reclassification would entail moving “motor vehicles” and “clothing and shoes” to non-core and “food away from home” to core. This latter adjustment is in fact slated to happen as part of the 2009 benchmark revision of the National Income and Product Accounts. The welfare loss from a policy that stabilized this “adjusted core PCE” inflation, compared to the optimal policy, is equivalent to a permanent increase of annual inflation in the optimal equilibrium by 0.5 percentage points (Jensen, 2002). In comparison, the inflation equivalents of core and total PCE stabilization are 0.8 and 1.3 percent respectively.

This paper is related to a fairly large literature on the welfare costs of price distortions in New Keynesian models, which includes the work of Aoki (2001) and Benigno (2004), as well as Erceg, Henderson and Levin (2000), who consider the case of distortions in the goods and labor markets, and Huang and Liu (2005), who focus instead on the presence of nominal rigidities in the production of intermediate inputs. The key lesson of this literature is that inflation stabilization is most important in the sectors in which nominal rigidities are more pronounced, since these are the sectors with larger real distortions. The contribution we add to this normative literature is the detailed quantitative dimension of our analysis, which was made possible by the data collection work of Bils and Klenow (2004), Klenow and Krytsov (2008) and Nakamura and Steinsson (2008a).

This empirical work in turn spurred a rich literature on the positive evaluation of macroeconomic models of price rigidity, started by Klenow and Krytsov (2008) and Golosov and Lucas (2007) and now including work by Midrigan (2008), Burstein and Hellwig (2007), Gertler and Leahy (2008), and Woodford (2008), as well as by Carvalho (2006) and Nakamura and Steinsson (2008b) in a multi-sector environment similar to ours. To our knowledge, none of this work includes a normative dimension to its analysis, which is instead the focus of this paper.\footnote{But see Burstein and Hellwig (2008) for the normative implications of the presence of menu costs in a one-sector model.}

The paper closest in spirit to ours is Mankiw and Reis (2003). These authors ask the same broad question we address in this paper—what measure of inflation should a central bank target?—and do so
in the context of a model of price setting with several dimensions of sectorial heterogeneity. However, their approach to the answer is significantly different from ours, in several respects. First, they consider a model with sticky information, rather than sticky prices. Second, they adopt an ad hoc, and unusual, objective for monetary policy. The central bank wants to minimize the volatility of real activity, with no regard to that of inflation. Third, their quantitative application is only meant to be suggestive, since the centerpiece of the paper is a theoretical analysis of the effect of heterogeneity on the optimal inflation target in a two-sector version of their model.

2 Measuring Heterogeneity Across PCE Categories

In this section, we present a dataset that includes measures of two important forms of heterogeneity in the production and pricing of PCE goods. The first, and most commonly studied, is the frequency of price adjustment, an indicator of differences in the degree of nominal rigidities across goods. The second is the revenue share of labor, which we interpret as evidence of differences in the production technology and in the markups charged by firms. We focus on these sources of heterogeneity, because they give rise to an asymmetry across goods in the distortions stemming from nominal rigidities. In the New Keynesian framework we adopt, these asymmetries might justify distorting the weights of a CONDI with respect to those of a COLI. The quantification of these distortions is the main objective of this paper.

2.1 Price Stickiness

The empirical study of the price-setting process at the microeconomic level is one of the most active areas of macroeconomic research of the last few years. Studies such as Bils and Klenow (2004), Klenow and Krytsov (2008) and Nakamura and Steinsson (2008a) for the United States and Dhyne et al. (2006) for the Euro Area have contributed to the dissemination of a wealth of detailed evidence on the stickiness of prices, especially for consumption goods. For the United States, the primary source of this evidence is the CPI Research Database at the Bureau of Labor Statistics, which contains the product level price data used to construct the CPI.

However, the main inflation gauge for monetary policy purposes in the United States is the PCE deflator. Therefore, we also adopt the PCE deflator as the reference for our analysis, since we wish to construct a price index, the CONDI, whose main purpose is to be a useful input for monetary policy.
As a result of this choice, we must convert the available CPI-based evidence on price stickiness into measures that are definitionally consistent with the PCE deflator. We use NS’ data as the starting point for this conversion because it is readily available and focuses on a period (1998-2005) in which inflation was low and stable.

NS report the average fraction of prices that change each month for 257 Entry Level Items (ELIs) in the non-shelter component of the CPI, which covers about 70 percent of total expenditures. They distinguish between changes in “actual” and “regular” prices. Actual price changes include changes due to sales and changes due to substitutions of discontinued items with closely matching ones. Regular price changes, on the contrary, only include changes in non-sale prices from one month to the next for the same item. NS argue that sales and product substitutions are mainly driven by considerations other than the desire of firms to change their prices and thus result in far less macroeconomic price flexibility than regular price changes. For this reason, we focus here on the frequency of regular price changes, with one exception.

We use the frequency of actual price changes for clothing and shoes (31 percent), because the median frequency of regular price changes is a very low 3.5 percent. This implies an average life for the price of an article of clothing of more than two years, which seems unreasonable given the high turnover in apparel due to seasonal purchasing patterns and fashion changes discussed by Liegey (1994).

Another major PCE product for which we do not follow NS is medical care. A large fraction of medical care prices in the PCE do not refer to the out-of-pocket expenses covered by the CPI, but rather to services consumed by individuals and paid by insurance companies. Therefore, the frequency of price adjustment for the medical care ELIs reported by NS is not an accurate measure of the degree of price stickiness in this sector. However, anecdotal evidence suggests that the prices for medical services result from bargaining between the insurers and the health providers, which usually take place once a year. This frequency of price adjustment is also consistent with the behavior of the non seasonally adjusted producer prices for medical services. As a result, we calibrate the average duration of PCE medical care prices to be a year, which implies that 8.3 percent of these prices adjust on average every month.

Figure 1 summarizes the evidence on the distribution of price stickiness across goods by way of expenditure weighted CDFs. On the horizontal axis is the average fraction of prices that change in a month, from the stickiest to the most flexible. For each point on the CDFs, the vertical axis represents

8 This ELI-level data is part of the supplementary material for the published version of NS, available at http://www.columbia.edu/~en2198/papers/fivefactsELITableSup1.xls. (URL last accessed: January 25th 2009)

9 For the impact of sales on monetary neutrality see in particular Kehoe and Midrigan (2008).
the fraction of expenditures on goods whose prices adjust as or less frequently than the corresponding frequency on the horizontal axis.

The price adjustment CDF for the ELI-level CPI data is labeled “CPI” in the figure. The frequency of adjustment on the horizontal axis is for NS’ regular prices, except for the ELIs within clothing and shoes and medical care. For the former we use posted prices, while for the latter we use our estimate of 8.3 percent. The weights are the expenditure shares for each ELI as reported by NS. They are reflated to sum to 100 percent of CPI expenditures. The resulting expenditure-weighted median monthly frequency of price change is 10.6 percent.

We need to convert this evidence into measures of price stickiness for the fifteen major goods and services categories in our PCE database. The conversion involves three steps.

First, we reflated each of the ELI weights so that the sum of the weights of all the ELIs within a particular PCE major product is equal to the average PCE expenditure share on that product over the period 1998-2006. The resulting CDF is labeled “CPI - with PCE weights” in Figure 1. The implied median frequency of price change is 8.3 percent. This shift of the distribution towards less flexible prices is explained by the fact that some services, most notably medical services, receive less weight in the CPI than in the PCE, due to the difference in scope between the two price indices. The prices of these services tend to be stickier than the CPI median.

In the second step of the conversion, we fold into NS’ data evidence from Genesove (2003) on price adjustment in housing services. Expenditures on housing services represent a very large fraction of total expenditures in the United States: close to 30 percent in the CPI and about 15 percent in the PCE. Unfortunately, the only evidence on price stickiness for these services in NS is on “lodging away from home”, while the bulk of housing expenditures in the PCE is on tenant and owner-occupied housing. Genesove (2003) estimates from the Annual Housing Survey that rents on 29 percent of apartments do not change in a year. Assuming a constant probability of price adjustment in each month, this number implies that the rent on 10.3 percent of rental units changes monthly. We assume that this estimate of nominal rigidity would hold also if owners rented out the dwellings they currently occupy.

10 This reflation requires a mapping from the CPI ELIs into the PCE major products, which are somewhat different from their equivalent in the CPI. To the best of our knowledge, nor the BEA nor the BLS provide an “official” version of this mapping, although building one is fairly straightforward. The details of the mapping we adopted are available upon request.

11 Expenditures on owner-occupied housing are based on imputed owners’ equivalent rents.

12 Genesove (2003) uses AHS data over the period 1974-1981. This is a very different sample than the 1998-2005 used by NS and it covers a period of relatively high inflation, which might lead to an overstatement of the frequency of price adjustment in rents. However, this is by far the most reliable evidence on price stickiness of housing services we were able to find.
Hence, we attribute a 10.3 percent monthly frequency of price change to tenant and owner-occupied housing and readjust the weights of the other ELIs within housing to be consistent with its PCE expenditure share.

The resulting CDF is labeled “PCE disaggregated” in Figure 1. This CDF tracks the previous two very closely for the stickiest half of expenditures, but the inclusion of the data on housing, whose price flexibility is slightly higher than the weighted median, shifts it higher in its more flexible half. The resulting median frequency of price adjustment goes from 8.3 percent to 8.6 percent, but this small change hides in part a shift of the right side of the distribution—with frequencies between 10 and 40 percent—towards stickier prices. This is a good illustration of the difficulty to capture the richness of actual distributions of price stickiness with only one measure of central tendency.

Finally, in the third step of the conversion, we propose three levels of aggregation for the evidence we have collected: (i) a baseline with one good, (ii) a two-good case, in which we separate core and non-core goods (i.e. food and energy) and (iii) a 15-good case by major type of product. For each of these three cases, we take the expenditure-weighted median of the frequency of price change within the relevant category as its measure of price stickiness.

At the last level of aggregation, our dataset includes the thirteen “major types of product” used by the Bureau of Economic Analysis (BEA) in the PCE NIPA tables, plus a distinction between food at home and away from home (rather than just food) and between electricity and gas and other household operations (rather than household operations alone). The reason for including these slightly finer distinctions is that the BEA categories we have split are very heterogenous in terms of price flexibility. The prices of food away from home, for example, are among the stickiest, while food at home is at the other hand of the flexibility spectrum. Table 1 includes a complete list of the product categories included in our dataset.

The CDF associated with our finer level of aggregation is labeled “PCE 15 category aggregates” in Figure 1. The aggregation using medians shifts the CDF further towards more sticky prices among the relatively flexible ones (i.e. to the right of the median). As a result, the median frequency of price adjustment across the 15 aggregates is 9.0 percent.

The fourth column of Table 1 lists the resulting frequency of price adjustment for each of the categories in the three levels of aggregation. For the baseline, we use the monthly frequency of price

13 In NIPA Table 2.3.4 (Price Indexes for Personal Consumption Expenditures by Major Type of Product), for example, we find a distinction between durable goods, nondurable goods, and services, as well as among thirteen more detailed categories at the next level of disaggregation.
adjustment obtained from the disaggregated PCE categories, 8.6 percent. Looking at the two-category case, we see that core prices adjust about two-thirds as frequently as non core prices. This differential is largely due to the flexibility of energy prices. In fact, food prices as a whole are about as sticky as core prices, since the prices of food away from home, essentially a service, are among the stickiest in the economy.

2.2 Revenue Share of Labor

The second form of heterogeneity across consumption goods we wish to measure is in the revenue share of labor. To construct these shares, we need to match data on consumption goods, which are part of final demand, with data on factor inputs at the industry level. The problem is that there is no direct mapping of industries into final goods.

In the literature, there are two main approaches to the solution of this problem. The first approach, followed for example by Huffman and Wynne (1999) and Bouakez, Cardia, and Ruge-Murcia (2005), is to use a reasonable grouping of industry data and define final goods, including consumption goods, according to this grouping. This approach is not suitable for our purposes, because it results in consumption goods that are not consistent with the categories in the PCE.

The second approach, followed by Valentinyi and Herrendorf (2008), uses inter-industry relationships to reconstruct which industries produce the value added embodied in consumption goods. This approach allows to construct consumption-good-specific aggregates that are consistent with the PCE classifications and that account for the whole structure of the U.S. supply chain. For this reason, this is the methodology we follow here. This approach involves the manipulation of U.S. input-output tables and of industry data on value added and factor costs. These manipulations are summarized in Appendix A.1.

In our application, we focus on the major products in the PCE, rather than on the broader components of final demand considered by Valentinyi and Herrendorf (2008). Our data sources are the input-output tables published in Chentrens (2007) and data on industry factor payments from Bureau of Economic Analysis (2008). With these inputs, we calculate a time series of annual labor shares for the PCE categories at our three levels of aggregation over the period 1998-2006. The resulting average labor shares are reported in the fifth column of Table 1.

We find that the average revenue share of labor in total PCE is 70.3 percent, somewhat higher than the 65 percent reported by Valentinyi and Herrendorf (2008). Labor shares vary substantially across
consumption goods. Energy goods have the lowest labor share, 61 percent, while, at 83 percent, the labor share of medical services is the highest among all 15 PCE categories. At first glance, the variation in labor shares appears smaller than that in the frequencies of price changes. To study the implications of these two kinds of heterogeneity for monetary policy, we incorporate them into our model, which we present in the next section.

3 A Multi-Sector Model with Price Rigidities

In this section, we sketch a multi-sector generalization of the textbook New-Keynesian model, along the lines of Benigno (2004) and Woodford (2003). The model economy is populated by a continuum of worker-producers indexed by \(j \in [0,1] \). Each of these agents produces a single differentiated good in a specific sector. \(n = 1, \ldots, N \), and consumes a composite of all goods. Sectors produce a composite consumption good that we identify with one PCE category in the data. The size of each sector is determined by the fraction \(a_n \) of producers that belong to the sector, with \(\sum^N a_n = 1 \).

The production process differs across sectors in three dimensions. First, the frequency with which producers are allowed to change their prices \((1 - \alpha_n) \), i.e. price stickiness, as in Benigno (2004). Second, the elasticity of output with respect to changes in the labor input \((\lambda_n^{-1}) \), i.e. the returns to labor. Third, the elasticity of demand faced by each producer \((-\theta_n) \), which determines their desired (or steady state) markup. These last two parameters jointly determine the steady state revenue share of labor in each sector. They are also important determinants of the welfare costs of price dispersion, given any level of price stickiness. We introduce these two particular sources of sectorial heterogeneity to confront the evidence on labor shares across consumption sectors presented above. To our knowledge, we are the first to model this particular form of heterogeneity in a New Keynesian framework, and to study its normative implications.

3.1 Worker-Producers

Agent \(j \) in sector \(n \) maximizes lifetime utility

\[
U_t^j = E_t \sum_{T=t}^{\infty} \beta^{T-t} \left[\log C_T^j - \frac{h_T(j)^{1+\eta}}{1+\eta} \right],
\]

\(\eta \) and \(\lambda_n \) are set equal to 2.\footnote{Details on the model are available in an online appendix.}
subject to the flow budget constraint

$$E_t(Q_{t,t+1}B_{t+1}^j) + P_tC_t^j = B_t^j + (1 - \tau_n)p_t(j)y_t(j) + T_t,$$

where B_{t+1}^j is a portfolio of nominal assets with state contingent price $Q_{t,t+1}$—the stochastic discount factor. With complete markets, agents can insure against idiosyncratic shocks and thus all have the same level of consumption, if their initial intertemporal budget constraint is the same. Therefore, we drop the superscript j on consumption from now on.

Agent $j \in n$ produces and sells a differentiated good $y_t(j)$ at the price $p_t(j)$, according to the production function

$$y_t(j) = Z_{n,t}h_t(j)\frac{1}{\lambda_n}$$

where $Z_{n,t}$ is a sector-specific productivity process and $\lambda_n^{-1} \leq 1$ is the elasticity of output with respect to changes in the labor input. This parameter is indexed by n, since it differs across sectors. It represents the first form of sectorial heterogeneity we introduce in our model. The productivity process is AR(1) in logs

$$\ln Z_{n,t} = \rho \ln Z_{n,t-1} + \epsilon_{n,t},$$

with $\epsilon_{n,t} \sim N(0, \sigma)$ a sector-specific shock that is i.i.d. across sectors and time. Finally, τ_n denotes a sector-specific sales tax (or subsidy) and T_t lump-sum transfers from the government.\(^{15}\)

3.1.1 Consumption Aggregates and Price Indexes

Final consumption is a Cobb-Douglas aggregate of goods produced in each sector

$$C_t = \prod_{n=1}^N (C_{n,t}/a_n)^{a_n},$$

where $C_{n,t}$ is itself a composite defined by

$$C_{n,t} = \left(\left(\frac{1}{a_n}\right)^{\frac{1}{\theta_n}} \int_{j \in n} c_t(j)\frac{\theta_n-1}{\theta_n} dj\right)^{\frac{\theta_n}{\theta_n-1}}$$

and $c_t(j)$ is the amount consumed of the good produced by entrepreneur j in sector n. The parameter θ_n governs the elasticity of substitution among the continuum of varieties within the consumption

\(^{15}\) We assume that the sector-specific subsidy τ_n offsets the gross markup charged by firms in steady state, so that the economy fluctuates in a neighborhood of the efficient equilibrium. This assumption significantly simplifies the derivation of a second order approximation to the utility of the representative agent, which is the welfare criterion in our normative analysis. See Woodford (2003) for details on this approach to optimal monetary policy analysis and Benigno and Woodford (2005) for an alternative approach that does not rely on the efficiency of the steady state.
aggregate that defines sector \(n \). These aggregates are normalized so that, in steady state, \(a_n \) represents the share of expenditures directed to the purchase of composite good \(n \). We calibrate these shares to be consistent with the evidence, although we do not focus on them in the normative analysis, since the economic implications of this form of heterogeneity are not particularly interesting.

The minimum expenditure overall price index is therefore

\[
P_t \equiv \prod_{n=1}^{N} P_{n,t}^{a_n},
\]

a function of the sectorial price indexes

\[
P_{n,t} = \left[\left(\frac{1}{a_n} \right) \int_{j \in n} p_t(j)^{1-\theta_n} dj \right]^{\frac{1}{1-\theta_n}}.
\]

3.2 First Order Conditions

3.2.1 Demand Functions

The consumer’s intratemporal problem yields the following demand functions for each differentiated good produced by \(j \in n \) as a function of the sectorial demand \(C_{n,t} \)

\[
c_t(j) = \left[\frac{p_t(j)}{P_{n,t}} \right]^{-\theta_n} \frac{1}{a_n} C_{n,t}
\]

and for each sectorial consumption aggregate as a function of total consumption

\[
C_{n,t} = a_n \left(\frac{P_{n,t}}{P_t} \right)^{-1} C_t.
\]

Combining the two, we obtain

\[
c_t(j) = \left[\frac{p_t(j)}{P_{n,t}} \right]^{-\theta_n} \left(P_{n,t}^R \right)^{-1} C_t
\]

where \(P_{n,t}^R \) denotes the relative price of sector \(n \) with respect to the overall price index.

From these formulas, we observe that \(-\theta_n \) is the elasticity of demand faced by each producer in sector \(n \). This is the second dimension of sectorial heterogeneity we incorporate in our model.

3.2.2 Aggregate Consumption

The path of consumption for the aggregate good is described by the usual Euler equation

\[
1 = E_t \left[\frac{\beta u_C (C_{t+1})}{u_C (C_t)} \frac{R_t}{\Pi_{t+1}} \right],
\]
where R_t

$$R_t \equiv [E_t Q_{t,t+1}]^{-1}$$

is the gross nominal interest rate paid on one period bonds and Π_t is the gross inflation rate in the general price level.

3.2.3 Pricing

Each producer $j \in n$ faces a fixed per-period probability $(1 - \alpha_n)$ of re-setting her price. This probability, which varies across sectors, is the third source of heterogeneity we model. When given the chance, producer j chooses a price $p_{n,t}$ to maximize utility, taking as given the demand function she faces and the behavior of the other agents in the economy. The pricing problem can therefore be written as

$$\max_{p_{n,t}} E_t \sum_{T=t}^{\infty} (\alpha_n \beta)^{T-t} \left[\Lambda_T (1 - \tau_n) p_{n,t} y_{n,t,T} - \frac{(y_{n,t,T}/Z_{n,T})^{\lambda_n(1+\eta)}}{1 + \eta} \right]$$

where

$$y_{n,t,T} \equiv \left[\frac{p_{n,t}}{P_{n,T}} \right]^{-\theta_n} \left(\frac{P_{n,T}}{P_T} \right)^{-\gamma} Y_T,$$

and $\Lambda_T = \frac{u_C(C_T)}{u_C(C_t)} P_T$ is the level of demand faced at time T by a producer who last set her price in t and $Y_T \equiv C_T$ is an index of aggregate output. The second term in the square bracket is the disutility suffered from producing a level of output $y_{n,t,T}$. This disutility is sector specific, due to the difference in production function across sectors, although we assume a common Frisch elasticity of labor supply η.

The first order condition with respect to the optimal price in sector n then gives

$$E_t \sum_{T=t}^{\infty} (\alpha_n \beta)^{T-t} \left[\frac{p_{n,t}}{P_T} - \frac{\theta_n}{(\theta_n - 1)(1 - \tau_n)} \frac{\lambda_n (y_{n,t,T}/Z_{n,T})^{\bar{\eta}_n}}{U_C(C_T)} y_{n,t,T} \right] = 0,$$

where $\bar{\eta}_n \equiv \lambda_n (1 + \eta) - 1$ is the elasticity of real marginal cost with respect to output.

3.3 Log-linearized Dynamics

Log-linearization of the first order conditions and of the aggregate price index described above yields a set of expectational difference equations in the endogenous variables $\hat{Y}_t, \pi_t, \{\pi_{n,t}\}_n, \{\hat{P}_{n,t}\}_n, \hat{R}_t$, where hats denote log-deviations from steady state, $\pi_{n,t} \equiv \log P_{n,t} - \log P_{n,t-1}$ is sectorial inflation and $\pi_t \equiv \log P_t - \log P_{t-1}$ is aggregate inflation. These equations include the Euler equation

$$\dot{Y}_t = - \left(\hat{R}_t - E_t \pi_{t+1} \right) + E_t \dot{Y}_{t+1},$$
and a set of Phillips curves for the determination of inflation in each sector

\[\pi_{n,t} = \beta E_t \pi_{n,t+1} + k_n \left[\left(\hat{Y}_t - \hat{Y}_t^f \right) + \left(\hat{P}_{n,t}^R - \hat{P}_{n,t}^{Rf} \right) \right] \]

where

\[\hat{Y}_t^f = \hat{Z}_t = \sum a_n \log Z_{n,t} \]

and

\[\hat{P}_{n,t}^{Rf} = - \left(\hat{Z}_{n,t} - \hat{Z}_t \right) \]

are the levels of output and the relative price that would prevail under flexible prices and the slope is

\[k_n = \xi_n \frac{1 + \eta_n}{1 + \theta_n \eta_n} \]

\[\xi_n = \left(1 - \alpha_n \beta \right) \frac{1 - \alpha_n}{\alpha_n}. \]

To these we add an equation for aggregate inflation

\[\pi_t = \sum_{n=1}^{N} a_n \pi_{n,t} \]

and the definition of the log-change in relative price

\[\hat{P}_{n,t}^R = \hat{P}_{n,t-1}^R + \pi_{n,t} - \pi_t. \]

We close the model with a description of monetary policy.

3.4 Monetary Policy

In the cashless economy with nominal rigidities presented above, monetary policy can affect allocations by choice of a state contingent path for the nominal interest rate. This choice can be modeled as a simple feedback rule, in which the interest rate is set as a function of some endogenous variables, or as the result of maximization of an objective function.\(^{16}\) This latter approach is at the center of the normative part of this study, but we follow the former when calibrating the model, since a policy rule has the best chance to provide a satisfactory empirical characterization of the observed behavior of monetary policy in the United States.

\(^{16}\) Svensson (2000) discusses in detail various approaches to the implementation of monetary policy in this class of models.
However, we do not write the policy rule explicitly in terms of the interest rate, but rather implicitly, as that rule that would result in a certain state contingent path of nominal income. In particular, we assume that nominal income, $Y_t = P_t Y_t$, which in our model is equal to consumption expenditures, follows the unit root process

$$
\Delta \ln Y_t = \epsilon_t^Y,
$$
as in Nakamura and Steinsson (2008b), for example, where ϵ_t^Y is i.i.d. with standard deviation σ^Y.

3.4.1 The Policy Objective

The main objective of this paper is to compute a price index that minimizes the cost of nominal distortions: CONDI. The criterion we adopt for the evaluation of this cost is the unconditional expectation of the utility function of the representative, or average, worker-producer in the economy

$$
E \sum_{t=0}^{\infty} \beta^t \left[\log C_t - \int_0^1 h_t(j)^{1+\eta} \frac{1}{1+\eta} dj \right],
$$
which we approximate to second order as

$$
W = -\frac{u_c C}{2} E \sum_{t=0}^{\infty} \beta^t L_t
$$

with

$$
L_t = \sum_n a_n \theta_n^2 \left(\theta_n^{-1} + \tilde{\eta}_n \right)^2 \pi_n^2 + \sum_n a_n (1 + \tilde{\eta}_n) \left(P_{n,t}^R - \hat{P}_{n,t}^R \right)^2 + (1 + \sum_n a_n \tilde{\eta}_n) \left(\hat{Y}_t - \hat{Y}_t^f \right)^2 - 2 \sum_n a_n \tilde{\eta}_n \left(\hat{P}_{n,t}^R - \hat{P}_{n,t}^R \right) \left(\hat{Y}_t - \hat{Y}_t^f \right).
$$

This approximate loss function depends on the inflation rate in each sector, on the deviations of relative prices and of aggregate output from their flexible price counterparts, as well as from the cross-product of these two deviations. This latter term appears in the approximation because of the heterogeneity in production functions across sectors, which is reflected in $\tilde{\eta}_n$. If this parameter were constant across sectors, the weighted log-deviations of relative prices from their steady state value would be zero, both in the actual as well as in the flexible price equilibrium, so that the cross term would disappear. In this case, and with $\theta_n = \theta$, we would recover an approximate loss function identical to that in Benigno (2004).

Through its parameters, the loss function depends crucially on all the sources of heterogeneity in the model. Focusing on the coefficient on inflation variability, which is the largest contributor to welfare
losses, we see that a more elastic demand (higher θ_n), a more concave production function (higher λ_n and thus higher $\tilde{\eta}_n$) and a lower frequency of price adjustment, which results in a flatter Phillips curve (higher α_n and thus lower ξ_n), all amplify the losses from a given path of sectorial inflation.

The period loss function in (4), together with the sectorial Phillips curves (1), highlights fairly clearly the nature of the policy tradeoff facing the monetary authority. In the first best, output and the relative price in each sector are equal to their flexible price counterparts. This in turn results in zero inflation in every sector. However, this equilibrium is not within the reach of a monetary policy authority with only one instrument.\(^{17}\) The reason is that the productivity shocks specific to each sector induce movements relative prices, and thus in sectorial inflation, even under flexible prices. Such relative price movements cannot all be offset by the choice of the output gap. Conversely, a choice of the output gap that resulted in zero inflation on average would not imply zero inflation in each sector, given a random draw of productivity shocks.

3.4.2 The CONDI

At the center of our normative analysis is a class of strict targeting rules that perfectly stabilize a weighted average of good-specific inflation rates—a fixed weight Törnqvist (1936) index—of the form

\[
\pi_t^{\text{target}} = \sum_{n=1}^{N} \phi_n \pi_{n,t} = 0, \text{ with } \phi_n \geq 0 \text{ and } \sum_{n=1}^{N} \phi_n = 1.
\]

The CONDI is the index that corresponds to the best policy within this class. More formally

\[
\pi_t^{\text{CONDI}} = \sum_{n=1}^{N} \phi_n^* \pi_{n,t},
\]

where the set of weights $\{\phi_n^*\}_n$ is chosen to maximize W, under the constraints that embed the optimal behavior of the private sector, equations (1) and (2). We also consider two alternative targeting rules, headline PCE targeting and core PCE targeting. PCE targeting is defined by the standard expenditure weights

\[
\phi_n^{\text{PCE}} = a_n \text{ for } n = 1, \ldots, N,
\]

while core targeting has weights

\[
\phi_n^{\text{core}} = \begin{cases}
0 & \text{for } n \notin \text{core} \\
(\sum_{n' \in \text{core}} a_{n'})^{-1} a_n & \text{for } n \in \text{core}
\end{cases}.
\]

\(^{17}\) In this model, we can think of the output gap as the policy instrument. The evolution of the nominal interest rate necessary to achieve a certain path for the output gap (or output) can always be inferred from the consumption Euler equation, since this relationship is not a binding constraint on the optimal policy problem.
where the set of core goods consists of all types of expenditures except for those on food and energy.

The comparison of the welfare implications of the three targeting rules just described forms the basis for our discussion of the relative merits of monetary policies that focus on the stabilization of core rather than headline inflation. Of course, a strict inflation target of any kind—headline, core, or CONDI—cannot be a practical recommendation for policy. Nevertheless, the comparison among targeting rules we propose can provide useful indications on the type of inflation index that central banks should monitor most closely as a gauge of the distortionary effects of inflation.

The reference point for the evaluation of the relative performance of the three targeting rules we consider is the unconstrained optimal policy. This is the solution to the linear-quadratic Ramsey problem defined by the welfare function W and by the constraints (1) and (2). Under our assumptions, this solution provides a first order approximation of the optimal equilibrium, as well as a second-order approximation of welfare under this equilibrium (Woodford, 2003).

For this evaluation, we follow Jensen (2002) and Dennis and Söderström (2006) and compute an “inflation equivalent” for each targeting rule. The inflation equivalent for any suboptimal policy is a simple monotonic transformation of the welfare differential between the optimal and the suboptimal policy. As we show in Appendix A.3, it can be interpreted as the constant amount of inflation that would need to be added exogenously to the path of inflation under the optimal policy to make the representative agent indifferent between this distorted equilibrium and the suboptimal one. We adopt this particular measure of the distance between two policies, rather than a consumption equivalent, for example, because it results in a direct comparison of the costs of stabilizing the wrong kind of inflation to those of stabilizing inflation around the wrong level. The optimal level of inflation and the costs of deviating from it have been widely debated in the literature and among policymakers at least since Friedman (1969) and thus they provide a useful benchmark for our discussion.18

3.5 Calibration

In this section, we use the evidence presented in Table 1 to discipline the choice of the model parameters that govern the degree of sectorial heterogeneity. For the parameters without a cross-sectional dimension, we use standard values to the extent possible. The calibration assumes that the PCE categories

18 See for example Kahn, King and Wolman (2003) for a very detailed study of the effect of several frictions on the optimal level of inflation in a model with price stickiness. Billi (2008) is a recent treatment focused on the role of the zero bound on nominal interest rates and includes detailed references, while Billi and Kahn (2008) contains a discussion of the related policy debate in the United States. Fisher and Modigliani (1978) is a classic treatment of the costs of inflation and their sources.
in Table 1 correspond to the \(n = 1, \ldots, N \) consumption composites/sectors in the model and that time, \(t \), is measured in months.

3.5.1 Homogenous Parameters

Our choice of the parameters that are constant across sectors is guided by Carvalho (2006) and Nakamura and Steinsson (2008b), who calibrate multi-sector models with price rigidity similar to ours. We set the discount factor \(\beta \) so that the steady state annual real interest rate is 4 percent and pick an inverse Frisch elasticity of labor supply, \(\eta \), equal to 0.5. This value is a compromise between the linear specification, \(\eta = 0 \), adopted by Nakamura and Steinsson (2008b) and typical of the RBC literature (Hansen, 1985) and the low elasticities of labor supply usually estimated by the empirical labor literature, which might suggest values for \(\eta \) around 2, as in one of the specifications in Carvalho (2006).

We choose the parameters of the distribution of the productivity shocks, the standard deviation \(\sigma \) and autocorrelation \(\rho \), to replicate the standard deviation and autocorrelation of monthly PCE inflation over the period 1998 to 2006, which are equal to 0.20 and 0.19 percent respectively. This procedure implies different values for \(\sigma \) and \(\rho \) across different quantitative renditions of the model, depending for example on the number of sectors considered and on the kinds of heterogeneity included in the specification. This is because, as in any DSGE model, the mapping from the distribution of the primitive shocks to the moments of the endogenous variables depends on the specification of the rest of the model.

For this moment matching exercise, we assume that monetary policy is conducted so that nominal income \(\gamma_t \equiv P_t Y_t \), which in the model is equal to consumption expenditures, follows the unit root process (3), as in Nakamura and Steinsson (2008b). We calibrate the standard deviation of the innovation to this process, \(\sigma_{\gamma}^2 \), to match the standard deviation of the monthly growth rate of consumption expenditures over the period 1998-2006, which is equal to 0.49 percent.

3.5.2 Heterogenous Parameters

The calibrated values for the parameters that are heterogenous across sectors are summarized in Table 1. The first, and least interesting, form of heterogeneity we must take into account in the calibration is the size of each sector. In the model, this size is governed by the parameters \(\{a_n\}_n \), which determine the steady state expenditure share directed to each sector. We calibrate these parameters to match the average expenditure shares of the relevant PCE categories over the period 1998-2006.

The second dimension of heterogeneity we calibrate is the frequency with which producers can adjust
their prices. In the time-dependent price setting model we consider, every month a fraction \((1 - \alpha^n)\) of the goods that belong to composite \(n\) have their price adjusted. We match this fraction to the frequency of price change data listed in the fourth column of Table 1.

The last dimension of heterogeneity we calibrate is the revenue share of labor. In the model, the steady state share of labor in the revenue generated by sales in sector \(n\), \(s^n_l\), equals

\[
s^n_l = \lambda^{-1}_n \cdot \frac{\theta_n - 1}{\theta_n}.
\]

This share depends on the elasticity of output to changes in the labor input, \(\lambda^{-1}_n\), and on the inverse of the gross desired markup of firms in sector \(n\), \(\frac{\theta_n}{\theta_n - 1}\), which in turn is a function of the elasticity of demand faced by each firm, \(\theta_n\). The data do not allow us to distinguish between variations in the labor share due to differences in demand or in labor elasticities. For this reason, we present results for three parameterizations, which are all consistent with the observed labor shares. The first parameterization, which we denote by (I), attributes all the variation in labor shares to differences in demand elasticities, \(\theta_n\). The second parameterization (II) attributes all the variation in labor shares to differences in labor elasticities, \(\lambda_n\). The third parameterization (III) is the intermediate case in which half of the variation in labor shares comes from \(\theta_n\) and the other half from \(\lambda_n\).

If the demand elasticity does not vary across goods, as in the one-sector baseline model and under parameterization (II), we set \(\theta_n = \bar{\theta} = 5\), as in one of Carvalho’s (2006) specifications, which implies a steady state markup of 25%. This is very close to the average wholesale markup from the 1997 Census of Wholesale Trade among the industries that Bils and Klenow (2004) were able to match to consumer goods in the CPI. A value of 5 for the elasticity of demand is intermediate between the low elasticities—in the range of 3 to 4—typically found in the IO literature and used for example by Nakamura and Steinsson (2008b) and Midrigan (2008), and the higher values more often adopted in the macroeconomic literature—in the range between 7 and 10—based on the implications of these elasticities for steady state markups (Woodford, 2003; Golosov and Lucas, 2007).

If the labor elasticity of output does not vary, as in the one-sector baseline model and under parameterization (I), we choose \(\lambda_n = \bar{\lambda} = 0.88\). Given the baseline elasticity of demand \(\bar{\theta} = 5\), this is the degree of decreasing returns to labor that is consistent with the average revenue share of labor in total PCE of 70 percent over the period 1998 to 2006.

19 This parameterization is explained in more detail in Appendix A.2.
20 We thank Mark Bils for providing us this matched dataset. The average markup in this dataset is 24%, which implies an elasticity of demand of 5.1, while the weighted average markup (weighed by CPI expenditure shares) is 20%, with an implied elasticity of demand of 5.8.
The three parameterizations corresponding to the observed heterogeneity in labor share are explained in more detail in Appendix A.2. The resulting parameter values are listed in the last four columns of Table 1.

4 Results

In this section, we discuss the properties of the CONDIs implied by the calibrations discussed above. We start from a two-good, two-sector version of the model, which distinguishes between core and non-core goods. The simplicity of this specification highlights the qualitative relationship between the CONDI-weights and the parameters that are heterogenous across sectors and the economic intuition behind it. We then move on to an empirically more realistic 15-good version of the model, in which we can study in more detail the allocation of CONDI weights within the core and non-core sectors, where a significant amount of heterogeneity remains. Finally, we consider the practical implications of our results for monetary policy.

4.1 The Two-Good Model: Core and Non-Core

The results for the two-good calibration of the model are reported in Table 2. For ease of reference, the first group of columns reports the calibrated values of the parameters that change across sectors, which we already discussed in the previous section.

The column labeled 1 reports the CONDI weights in the case in which the frequency of price adjustment and the labor share in both sectors are set to their baseline homogenous values. These weights are the same as the PCE expenditure weights: the CONDI and the COLI coincide. When the two sectors are structurally identical, there is no reason to “twist” the CONDI weights with respect to the expenditure weights because the distortions caused by nominal rigidities are the same across sectors. Moreover, in this case, PCE stabilization is a way of implementing the optimal policy, as confirmed by the fact that its inflation equivalent is zero. In fact, the sectorial Phillips curves can be aggregated in an economy-wide Phillips curve with no tradeoff between output gap stabilization and (headline) inflation stabilization. Therefore, the latter also delivers the former, at unchanged relative prices, thus reproducing the efficient equilibrium. Blanchard and Galí’s (2007) “divine coincidence” holds under this particular parameterization, as originally shown by Benigno (2004).

Stabilizing core inflation is not a good policy in these circumstances, since it would imply ignoring
the distortions in the non-core sector. When the two sectors have the same price stickiness and other parameters, these distortions are just as large as those in the core sector, although the core sector accounts for a much larger part of expenditures. As a result, the inflation equivalent for this policy is 0.5 percent per month, a large loss compared to the optimal policy.

Column 2 considers the case in which sectors differ only in the frequency of price adjustment. According to our calculations, 11.8 percent of non-core prices change every month, as opposed to 8.3 percent in the core sector. As a result, core inflation receives a weight of 89.9 percent in the CONDI, compared to a PCE weight of 81.3 percent. As expected, the CONDI puts more emphasis on the stabilization of inflation in the stickier sector, since this is where the distortions due to price dispersion are larger. However, the non core sector still receives a non-negligible weight of 10.1 percent, given that its prices are far from perfectly flexible. In terms of weights, then, the CONDI is an almost perfect average of total and core PCE.

However, this result does not imply that headline and core targeting are equivalent policies in terms of welfare, as we can observe from the last two rows of Column 2. Core targeting performs worse than headline stabilization under this calibration. The two policies have inflation equivalents of 0.51 and 0.36 percent respectively. This result suggests that the mapping from the weights in the targeting criteria to their welfare implications is not symmetric around the optimal weighting scheme: the losses increase more steeply as we shift weight towards the core sector.

The other remarkable result from Column 2 is that the inflation equivalent of CONDI stabilization is virtually zero (0.005 percent per month). In fact, CONDI stabilization delivers similarly low inflation equivalents across all the calibrations we consider in Table 2. This result confirms the robustness of Benigno’s (2004) conclusion regarding the ability of a policy that stabilizes an optimally weighted inflation rate to approximate the optimal equilibrium very closely.

An important implication of the excellent welfare performance of CONDI stabilization in our framework is that the CONDI weights we have computed would change little if we embedded their optimal choice in a more flexible policy rule, such as an interest rate feedback rule. Even then, in fact, the optimization would have to return something very similar to the strict CONDI targeting rule we have assumed at the outset, and with the same CONDI weights, since there is very little room to improve on this rule’s performance.

In columns 3 through 5 of Table 2 we move on to consider three alternative calibrations of the model, in which we allow the labor share to differ across sectors, but keep the degree of price stickiness at its
baseline level. Column 3 corresponds to parameterization (I). This is the case in which heterogeneity in labor shares is due exclusively to differences in markups and the curvature of the production function in all sectors is $1/\lambda = 0.88$. Column 4 corresponds to case (II), where the heterogeneity in labor shares is ascribed to differences in the labor elasticity of output, but markups are constant at $\theta = 1.25$ across all PCE categories. Column 5 considers the intermediate case (III) where half of the variance in log of labor shares is due to differences in markups and the other half to the labor elasticity of output.

When the elasticity of demand, and thus markups, differ across sectors (Column 3), the CONDI-weights continue to be skewed in the direction of the core sector, although to a lesser extent than in Column 2. The intuition for this result is that this calibration attributes the higher revenue share of labor in the core sector to a lower markup, due to a higher demand elasticity. A more elastic demand implies that a given degree of price dispersion translates into a higher degree of output dispersion across individual producers. As a result, it is optimal to counteract price dispersion, and thus inflation, more strongly in the core sector, where the welfare costs of that dispersion are higher. Quantitatively, this effect is not very strong. It leads to a more modest adjustment of the PCE weights than in the case of heterogenous price stickiness (Column 2).

We find the opposite result when the elasticity of labor in the production function is different across sectors, in a manner consistent with the observed heterogeneity in labor shares and with a constant markup of 25 percent (Column 4). In this case, the core sector receives a lower weight in the CONDI than in the PCE. The reason is that the higher labor share now maps into a higher labor elasticity of output and thus into less curvature of the production function. This curvature, in turn, determines the transmission of the cross-sectional dispersion of output within the sector into the cross-sectional dispersion of hours, which, in our model, is the main source of the welfare losses associated with inflation and price dispersion. In sum, a higher labor elasticity translates into less dispersion in hours, and thus lower welfare losses, for any given level of inflation. Therefore, the optimal weighting scheme suggests to pay less attention to core inflation, since the production function is less concave in labor in this sector.

In the intermediate case of heterogeneity in both markups and labor elasticities (Column 5), the CONDI-weights do not deviate much from the expenditure shares. This suggests that the countervailing effects of these two forms of heterogeneity approximately cancel out, making headline PCE a good approximation of CONDI.

In fact, the inflation equivalent of PCE stabilization in Column 2 is only 0.02 percent per month.
More in general, PCE stabilization outperforms core stabilization by a wide margin in all the calibrations with heterogeneity in labor shares only. The reason is that the differences in labor shares in the data are too small to result in significant deviations from the expenditure weights in the CONDI, as we just saw. As a result, ignoring the non-core sector entirely, as under core targeting, amounts to ignoring about one-fifth of the allocative inefficiencies caused by sticky prices in this economy, resulting in a large welfare loss.

Next, we study the interaction between heterogeneity in price stickiness and in labor shares. Columns 6 through 8 of Table 2 again consider the three cases in which the labor shares reflect differences only in the elasticity of demand (Column 6), only in the returns to labor (Column 7), or in both (Column 8). The effects of these various kinds of heterogeneity on the CONDI weights cumulate in a fairly straightforward way. In Column 6, the core sector has a CONDI weight of 92.2 percent since it has both stickier prices and a more elastic demand. In Column 7, instead, the weight on core is down to 88.1 percent, since this sector has stickier prices, but a less concave production function. In Column 8, the weight on core is 90.4 percent, which is very close to the 89.9 percent it should receive on account of price stickiness alone (Column 2). This is because the effects of the calibrated degrees of heterogeneity in demand and labor elasticities approximately cancel out, just like in Column 5 without heterogeneity in price stickiness.

In terms of welfare, the results are consistent with those for the case with heterogeneity only in price stickiness (Column 2). Headline PCE targeting continues to outperform core stabilization, except under the calibration in Column 6, in which the two policies are roughly equivalent. The distance between the two policies is equivalent to roughly 1.5 percent steady inflation per year under parameterization (III).

Comparison of the CONDI-weights in the last three columns of Table 2 with those in Column 2 leads us to one important conclusion. The basic principle that core inflation should be stabilized more forcefully than non-core inflation is quantitatively robust to the inclusion of a degree of sectorial heterogeneity in labor shares that is consistent with the data. This is particularly true in the case represented in Column 8, which we consider the most realistic, since it admits that the measured heterogeneity in labor shares might reflect differences in both markups and the returns to labor in the production function. However, the differences in the CONDI weights with respect to the case with only heterogenous stickiness remain negligible overall even in the extreme cases considered in columns 6 and 7.
The two-good example presented in this section is a useful tool to develop some intuition for the relationship between structural heterogeneity and the CONDI-weights. However, accounting for the substantial heterogeneity in price stickiness and labor shares within the core and non-core sectors is important for the construction of an empirically relevant CONDI. We turn to this more detailed construction in the next section.

4.2 The Fifteen-Good Model

The CONDI weights for the 15-sector calibration of the model are reported in Table 3. Column 1 again corresponds to the homogenous case in which stabilizing PCE inflation is the optimal policy. Hence, the CONDI weights in that Column correspond to the PCE shares listed in Table 1.

In Column 2, which refers to the case with only heterogeneous price stickiness, several entries stand out. First, “gasoline, fuel oil and other energy goods”, with a frequency of price adjustment of 87.6 percent per month, receives no weight in the CONDI, as does the energy component of “household operations”. “Food at home”, with a frequency of price adjustment of 12.3 percent, largely attributable to fresh food, also shrinks from a weight of 8.5 percent to 3.8 percent. On the other hand, “food away from home”, with a frequency of price adjustment of 5.0 percent per month, which is far lower than the median, sees its CONDI weight inflated to 14.1 percent, from its 5.2 percent PCE expenditure share. Hence, ignoring the heterogeneity in price rigidities within non-core goods would lump the sticky prices of food away from home with the extremely flexible ones of energy and food at home.

Turning now to the weights on the core sectors, three categories stand out in terms of the deviation of their CONDI weights from their expenditure shares. The first is “other services”, for which only 5.8 percent of the prices change each month. This is the PCE category with the stickiest prices and its CONDI weight, at 28.0 percent, is double its expenditure share. This increase in the weight of other services comes at the cost of that of two other core sectors: “motor vehicles” and “clothing and shoes”. Both of these categories receive less than a 0.5 percent weight in the CONDI because of their very flexible prices.

Under this calibration, the sum of the CONDI weights on the four non-core sectors is equal to 18.0 percent, which is almost identical to their 18.7 percent expenditure share in the PCE. Perhaps surprisingly, this does not imply that the stabilization of headline inflation is a better policy than core

21 Other services includes financial and legal services, education, clothing repairs and cleaning, and funeral services, among others.
inflation targeting, as demonstrated by the inflation equivalents at the bottom of Column 2. Headline PCE targeting produces welfare losses equivalent to a steady inflation of 0.13 percent per month, or about 1.5 percent per year, while the inflation equivalent of core targeting is less than 1 percent per year. The reason is that headline stabilization weighs core and non-core correctly, but misallocates this weight within each category, attributing too much weight to the very flexible prices within non-core and too little to the stickier prices within core, such as other services. As it turns out, this misallocation is more severe than for core inflation, which puts no weight on the very sticky food away from home, but too much on the flexible prices within core, such as motor vehicles and clothes.

When we move to calibrations with heterogenous labor shares, we recover similar qualitative patterns to those identified in the corresponding two-sector model. Sectors with high labor shares, most notably medical care, have larger CONDI than PCE weights when those labor shares are translated into low markups (Column 3). On the contrary, the CONDI weights are smaller when large labor shares are mapped into a higher labor elasticity (Column 4). The two effects approximately cancel out in the intermediate case (Column 5), when we recover CONDI weights very similar to the expenditure shares listed in Column 1. As a result, the calibration that includes all forms of heterogeneity (Column 8) produces CONDI weights and welfare rankings very similar to those with heterogenous stickiness only (Column 2).

Once again, we can conclude that the basic principle that the stability of inflation in the goods with stickier prices should feature more prominently in the objectives of central banks is quantitatively robust to the presence of a realistic degree of dispersion in labor shares. However, a simple distinction between core and non-core prices is not sufficient for the optimal implementation of this principle, since in practice these two broad aggregates hide a fairly large amount of heterogeneity in price stickiness. In fact, core inflation targeting yields inflation equivalent welfare losses of 0.8 percent per year, compared to losses under CONDI stabilization that are virtually indistinguishable from those under the optimal policy. Yet, core inflation targeting represents a significant improvement over headline inflation targeting, with an inflation equivalent of 1.3 percent per year.

We conclude this section with a comparison of the ex-post CONDI with headline and core PCE inflation in the time-series, rather than the welfare dimension. We build the ex-post CONDI as

\[\pi_t \text{CONDI} = \sum_{n=1}^{N} \phi_n^* \pi_{n,t}, \]

where the weights \(\{\phi_n^*\}_n \) are those from our preferred calibration with all forms of heterogeneity (Column 26).
8 of Table 3). The sectorial inflation rates \(\{\pi_{n,t}\}_n \) are the historical realizations of the log-price changes in the prices of the 15 PCE products in our database, as reported by the BEA.\(^{22}\)

Figure 2 plots the annualized monthly inflation rates in the three indexes—CONDI, headline and core PCE—over the period January 1998 to December 2006. This time-series view confirms our welfare analysis. The realized CONDI and core inflation behave quite similarly, while total PCE inflation exhibits significantly more volatility. Over this sample period, the correlation of the CONDI with core inflation is 0.86, while that with headline is only 0.50. In terms of volatility, total inflation has the highest, with a standard deviation of 2.3 percent, while the CONDI was historically somewhat more volatile than core, with standard deviations of 1.3 and 1.0 percent respectively. This ranking is not too surprising, in light of the emphasis of monetary policy in the United States on the stabilization of core inflation. However, our welfare analysis suggests that there might be significant gains from focusing instead on the stabilization of an inflation index that takes into account more explicitly the differences in price stickiness across different consumption goods, such as the CONDI.

4.3 Implications for Monetary Policy

The key practical lesson we draw from the quantitative exploration we just discussed is that a monetary policy that focuses on the stabilization of core inflation represents a significant improvement over one that targets headline inflation instead. Under our preferred calibration of the 15-sector model, headline stabilization produces welfare losses that are equivalent to an increase of average inflation by 1.3 percentage points per year, while the inflation equivalent of core targeting is 0.8 percent per year.

Both these numbers remain fairly large.\(^ {23}\) However, our analysis suggests that a further substantial improvement is possible. In fact, CONDI stabilization can almost entirely eliminate the losses associated with the other targeting rules we have considered and provides an excellent approximation of the optimal policy. The problem is that CONDI stabilization is not a viable recipe for policy making, for at least two reasons. First, from a theoretical perspective, the exact specification of the CONDI is quite sensitive to

\(^{22}\) We exclude September and October 2001, in which the price index of other PCE services fluctuated due to the accounting for the September 11th terrorist attacks.

\(^{23}\) By way of comparison, Dennis and Södertström (2006) and Jensen (2002) find welfare gains in moving from discretion to commitment of the order of 1 percent inflation per year. Billi (2008) calculates that the impact of the zero lower bound on nominal interest rates can be minimized by increasing average inflation from zero to around 0.5 percent per year. Kahn, King and Wolman (2003) find that the steady state inflation rate that optimally minimizes the costs of several monetary and price distortions is -0.76 percent, or about 2 percentage points higher than Friedman’s (1969) recommendation in their model. See also Goodfriend at al.’s (2007) recommendation of an inflation target of 2 percent for Norges Bank, rather than the current 2.5 percent. Overall, these numbers suggest that the welfare implications of differences in steady state inflation of around 1 percent per year are well worth studying.
the details of one’s model. Second, from a policy perspective, such a construct would probably be too complicated and obscure to be communicated effectively to the public.

Nevertheless, the CONDI we have computed can be used as a guide to the construction of an adjusted core inflation rate with the potential to achieve at least some of the available welfare gains. The simple adjustment we propose entails reclassifying some PCE categories within the core versus non-core framework. In particular, we would suggest moving “food away from home” from non-core to core and “motor vehicles” and “clothing and shoes” from core to non-core.

The first reclassification is actually scheduled to happen as part of the benchmark revisions of the National Income and Product Accounts in August 2009 (McCully and Teensma, 2008). This move appears very sensible from the perspective of our results, given the price stickiness of this particular category, which reflects its high service content. As for motor vehicles, their prices are extremely flexible according to most available measures, partly due to variations in the costs of financing and the incentives offered by dealers over the model year and the business cycle. Therefore, this reclassification for the purposes of monetary policy should also be fairly uncontroversial. Finally, apparel prices are the category with the largest discrepancy in the frequency of “posted” and “regular” price adjustments. Their posted prices change very often, due to seasonal sales and frequent product substitutions (Liegey, 1994), while the regular prices computed by NS have an average life of more than two years. We chose to measure the stickiness of this category with regular prices, whose flexibility leads us to recommend its exclusion from modified core. We would have reached the opposite conclusion if we had adopted their regular frequency of price change instead.

As a result of our proposed reclassification, “adjusted core PCE” inflation would be defined as covering total expenditures excluding autos, clothing, energy, and food at home. The implications of this reclassification for welfare are illustrated in the last row of Table 3. The inflation equivalent of “adjusted core PCE” targeting under our preferred calibration (Column 8) is a bit below 0.5 percent per year. This is a significant improvement over core inflation targeting, whose inflation equivalent is 0.8 percent per year, and a reduction of about 1 percentage point in inflation with respect to headline inflation targeting.
5 Conclusions

This paper studied quantitatively an inflation index that is stabilized using monetary policy to minimize the welfare costs of nominal distortions: a Cost-of-Nominal-Distortions Index (CONDI). We computed the weights on sectorial inflation rates that define this index within a multi-good, multi-sector New-Keynesian model with time-dependent price setting, calibrated to U.S. evidence on the degree of heterogeneity in the frequency of price adjustment and in labor shares across goods and sectors. We focused on these two forms of heterogeneity because they reflect structural features of the sectors, such as price stickiness, the elasticity of demand and the returns to labor, that justify a distortion of the CONDI weights with respect to the expenditure weights that define the usual PCE inflation index.

The evidence for the model’s calibration is collected in a dataset whose finer units of observation are 15 “major types of product” within Personal Consumption Expenditures. We built this dataset using as starting points Nakamura and Steinsson’s (2008a) data on the frequency of price adjustment for the non-shelter component of the CPI and the input-output tables in Chentrens (2007), from which we obtained labor shares for the PCE major products using the method of Valentinyi and Herrendorf (2008).

We can summarize our quantitative analysis as follows. First, the CONDI weights across the PCE categories in our dataset mostly depend on price stickiness and are less affected by the other sources of heterogeneity we consider. Second, CONDI stabilization closely approximates the optimal policy and leads to negligible welfare losses. Third, core PCE stabilization is a better policy than headline PCE targeting, because core inflation on net readjusts the expenditure weights on sectorial inflation rates in a direction similar to that of the CONDI. Fourth, core targeting is only a very rough approximation of CONDI stabilization in terms of welfare. However, actual core inflation and the ex-post realized CONDI are highly correlated in U.S. data and their volatility is quite similar. Fifth, this approximation can be improved substantially by a simple reclassification of major products from core to non-core, and vice versa.

The calculations presented in this paper are only a very preliminary step towards a comprehensive quantitative analysis of the welfare consequences of sectorial heterogeneity in nominal distortions. There are at least three areas in which future research would be desirable. First, from a data perspective, we have the least information on the rigidity of prices in the two most important PCE categories by expenditure share: housing and medical care. In fact, this is not only a data collection issue. It is
unclear what it means to be sticky for a notional price such as owner’s equivalent rent, or for a non allocative price such as that paid by insurance companies for medical care.

Second, from a modelling perspective, we have worked with the simplest New Keynesian specification, with the minimal enrichments required to include heterogeneity in price stickiness and labor shares. In particular, we adopted a Calvo pricing scheme that yields a simple and transparent approximation of the utility of the representative agent. The main shortcoming of this choice is that the selection effect that would be present in a menu cost version of this model might also mute the welfare costs of nominal distortions. However, we have no particular reason to believe that the selection effect would change the relative performance of the targeting rules that we consider in our welfare analysis.

Third, in terms of calibration, we have only considered two main sources of sectorial heterogeneity: the frequency of price adjustment and labor shares. In practice, sectors differ along many more dimensions that might be relevant for welfare, such as the volatility and persistence of shocks and the degree of nominal rigidity in the markets on which firms purchase their labor and intermediate inputs. The exploration of the welfare consequences of these forms of heterogeneity is in our opinion an important avenue for future research.

24 See for example Golosov and Lucas (2007), Burstein and Hellwig (2008), and Midrigan (2008).
References

A Appendix

A.1 Calculation of Labor Shares

Let n be the number of consumption goods for which we have data. Let m be the number of commodities/sectors in the input-output tables. Let the use-matrix be given by U of which the (i,j)-th element reflects the fraction of gross output of commodity j used as intermediate input by industry the industry that produces commodity i. Let y and v be column vectors, both of length m, with gross output and value added of the industries that produce the commodities, both in current dollars. We can write the resource constraint as

$$y = U \cdot l + v$$

Furthermore, consider the diagonalization operator, such that for

$$y = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^\prime; \quad y = \begin{bmatrix} y_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & y_n \end{bmatrix}.$$

This allows us to define

$$A = U \cdot y^{-1}$$

such that the (j,i)-th element of A corresponds to the intermediate input share of input j in the production of i. Then, we can write

$$y = Ay + v = (1 - A)^{-1} v$$

where $(1 - A)^{-1}$ is the domestic total requirements matrix. This allows us to calculate the total value added requirements for production of each commodity.

Let l be a column vector with the compensation of employees in each of the sectors and let k be the vector with factor payments, including profits, to factors other than labor. Then value added equals the sum of the factor payments, such that

$$v = 1 + k.$$

25 Throughout, we do not account for imports. That is, we consider a closed economy version of the input-output tables and calculate domestic requirements.
Finally, let the vector \(c \), of length \(n \), contain the amount of consumption of each of the consumption goods in current dollars. Let the matrix \(B \), of dimension \(n \times m \), be the consumption final demand matrix, where the \((i,j)\)-th element reflects fraction of output of commodity \(j \) that flows towards final demand of consumption good \(i \). Then

\[
(12) \quad c = By = B (1 - A)^{-1} v = B (1 - A)^{-1} 1 + B (1 - A)^{-1} k = c_l + c_k,
\]

where \(c_l \) reflects the part of consumption that can be accounted for by labor services, while \(c_k \) is the part of consumption that can be attributed to other factors.

The labor share in consumption good \(i \) can then be calculated as the ratio of the \(i \)-th element of \(c_l \) and the \(i \)-the element of \(c \).

A.2 Calibration of Demand and Labor Elasticities

Let the set of parameters that attributes all of the differences in labor shares to disparities in demand elasticities be given by \(\left\{ \theta_n^{(I)}, \lambda_n \right\}_{n=1}^{N} \). Let the set of parameter values that attributes all the variation to the heterogeneity of labor elasticities be given by \(\left\{ \overline{\theta}, \lambda_n^{(II)} \right\}_{n=1}^{N} \). Finally, let \(\left\{ \theta_n^{(III)}, \lambda_n^{(III)} \right\}_{n=1}^{N} \) be the set of parameter values that splits the variation equally across both potential sources. Then, these parameter values satisfy

\[
(13) \quad s_l^n = \frac{1}{\lambda} \left(\frac{\theta_n^{(I)} - 1}{\theta_n^{(I)}} \right) = \frac{1}{\lambda_n^{(II)}} \left(\frac{\overline{\theta} - 1}{\overline{\theta}} \right),
\]

and

\[
(14) \quad \left(\frac{\theta_n^{(III)} - 1}{\theta_n^{(III)}} \right) = \sqrt{\left(\frac{\theta_n^{(I)} - 1}{\theta_n^{(I)}} \right) \left(\frac{\overline{\theta} - 1}{\overline{\theta}} \right)} \quad \text{and} \quad \lambda_n^{(III)} = \sqrt{\lambda_n^{(II)}}
\]

such that

\[
(15) \quad var \left(\ln \left(\frac{\theta_n^{(III)} - 1}{\theta_n^{(III)}} \right) \right) = var \left(\ln \lambda_n^{(III)} \right)
\]

and

\[
(16) \quad var \left(\ln s_l^n \right) = var \left(\ln \left(\frac{\theta_n^{(III)} - 1}{\theta_n^{(III)}} \right) \right) + var \left(- \ln \lambda_n^{(III)} \right)
\]

which is the sense in which this set of parameter values apports the variation in labor shares equally between demand and labor elasticities.
A.3 The Inflation Equivalent

The objective is to compare welfare under any suboptimal equilibrium to that under the optimal policy. Denote the time series for the endogenous variables under the candidate suboptimal equilibrium with superscript SO and those under the optimal policy with superscript O. Then, the loss under the optimal policy is

$$
\mathcal{L}^O \equiv E \left\{ \sum_{t=0}^{\infty} \beta^t \left[\sum_n a_n \frac{\theta_n^2}{\xi_n} \left(\theta_n^{-1} + \bar{\eta}_n \right) \left(\pi_{n,t}^O \right)^2 + S_t^O \right] \right\}
$$

where S_t^O collects all the terms in the loss function other than inflation. The loss under the SO policy is instead

$$
\mathcal{L}^{SO} \equiv E \left\{ \sum_{t=0}^{\infty} \beta^t \left[\sum_n a_n \frac{\theta_n^2}{\xi_n} \left(\theta_n^{-1} + \bar{\eta}_n \right) \left(\pi_{n,t}^{SO} \right)^2 + S_t^{SO} \right] \right\}.
$$

We define inflation equivalent for equilibrium SO, π_{SO}^E the amount of steady inflation that would need to be exogenously added to the path of inflation in each sector under the optimal equilibrium to make the representative agent indifferent between this “distorted” optimal equilibrium and the suboptimal one. π_{SO}^E is thus defined by the equality

$$
E \left\{ \sum_{t=0}^{\infty} \beta^t \left[\sum_n a_n \frac{\theta_n^2}{\xi_n} \left(\theta_n^{-1} + \bar{\eta}_n \right) \left(\pi_{n,t}^O + \pi_{SO}^E \right)^2 + S_t^O \right] \right\} = \mathcal{L}^{SO}
$$

$$
\mathcal{L}^O + E \left\{ \sum_{t=0}^{\infty} \beta^t \left[\sum_n a_n \frac{\theta_n^2}{\xi_n} \left(\theta_n^{-1} + \bar{\eta}_n \right) \left(2\pi_{n,t}^O \pi_{SO}^E + \left(\pi_{SO}^E \right)^2 \right) \right] \right\} = \mathcal{L}^{SO}
$$

$$
\frac{1}{1-\beta} \sum_n a_n \frac{\theta_n^2}{\xi_n} \left(\theta_n^{-1} + \bar{\eta}_n \right) \left(\pi_{SO}^E \right)^2 = \mathcal{L}^{SO} - \mathcal{L}^O
$$

where the last line uses the fact that $E \pi_{n,t}^O = 0$. The inflation equivalent for equilibrium SO is therefore

$$
\pi_{SO}^E = \frac{1}{\sum_n a_n \frac{\theta_n^2}{\xi_n} \left(\theta_n^{-1} + \bar{\eta}_n \right)} (\mathcal{L}^{SO} - \mathcal{L}^O),
$$

a simple monotonic transformation of the loss differential between the suboptimal and optimal equilibria.
Figure 1: Cumulative density functions of price stickiness for four steps of data conversion.
Figure 2: Time series of, ex-post, historical realization of CONDI, compared to PCE.
Table 1: Calibrated parameter values

<table>
<thead>
<tr>
<th>Heterogeneity in</th>
<th>Core</th>
<th>PCE %</th>
<th>Frequency of Price Adjustment</th>
<th>Labor Share</th>
<th>(\theta^{(I)}_n)</th>
<th>(1/\lambda^{(II)}_n)</th>
<th>(\theta^{(III)}_n)</th>
<th>(1/\lambda^{(III)}_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td></td>
<td></td>
<td>(1 - a_n)</td>
<td>(\lambda^{-1}_n \theta_n^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) One Good</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCE total</td>
<td>100%</td>
<td>8.6%</td>
<td>70.3%</td>
<td>5.0</td>
<td>0.88</td>
<td>5.0</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>(ii) Two Goods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>81.3%</td>
<td>8.3%</td>
<td>72.8%</td>
<td>5.8</td>
<td>0.91</td>
<td>5.4</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Non-core</td>
<td>18.7%</td>
<td>11.8%</td>
<td>66.1%</td>
<td>4.0</td>
<td>0.83</td>
<td>4.4</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>(iii) Fifteen Goods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor vehicles</td>
<td>5.5%</td>
<td>31.3%</td>
<td>72.2%</td>
<td>5.6</td>
<td>0.90</td>
<td>5.3</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Furniture and household equipment</td>
<td>4.5%</td>
<td>6.0%</td>
<td>70.3%</td>
<td>5.0</td>
<td>0.88</td>
<td>5.0</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Other durables</td>
<td>2.4%</td>
<td>6.4%</td>
<td>69.8%</td>
<td>4.8</td>
<td>0.87</td>
<td>4.9</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Food at home</td>
<td>8.5%</td>
<td>12.3%</td>
<td>66.8%</td>
<td>4.1</td>
<td>0.83</td>
<td>4.5</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Food away from home</td>
<td>5.2%</td>
<td>5.0%</td>
<td>70.4%</td>
<td>5.0</td>
<td>0.88</td>
<td>5.0</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Clothing and shoes</td>
<td>4.2%</td>
<td>31.0%</td>
<td>69.3%</td>
<td>4.7</td>
<td>0.87</td>
<td>4.8</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Gasoline, fuel oil and other energy goods</td>
<td>2.8%</td>
<td>87.6%</td>
<td>61.4%</td>
<td>3.3</td>
<td>0.77</td>
<td>4.0</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Other non-durables</td>
<td>7.9%</td>
<td>9.4%</td>
<td>68.4%</td>
<td>4.5</td>
<td>0.85</td>
<td>4.7</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>15.1%</td>
<td>10.3%</td>
<td>69.9%</td>
<td>4.9</td>
<td>0.87</td>
<td>4.9</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Household operations - Other</td>
<td>3.5%</td>
<td>10.7%</td>
<td>72.0%</td>
<td>5.5</td>
<td>0.90</td>
<td>5.2</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Household operations - Electricity and Gas</td>
<td>2.2%</td>
<td>38.1%</td>
<td>51.6%</td>
<td>2.4</td>
<td>0.65</td>
<td>3.2</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td>4.0%</td>
<td>8.2%</td>
<td>71.7%</td>
<td>5.4</td>
<td>0.90</td>
<td>5.2</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Medical Care</td>
<td>16.3%</td>
<td>8.3%</td>
<td>83.2%</td>
<td>18.5</td>
<td>1.00</td>
<td>7.7</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Recreation</td>
<td>4.1%</td>
<td>9.0%</td>
<td>76.5%</td>
<td>7.7</td>
<td>0.96</td>
<td>6.0</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>Other services</td>
<td>13.9%</td>
<td>5.8%</td>
<td>76.4%</td>
<td>7.6</td>
<td>0.96</td>
<td>6.0</td>
<td>0.92</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Optimal weights and welfare losses under different heterogeneity cases for core and non-core aggregates

<table>
<thead>
<tr>
<th>Heterogeneity in Core</th>
<th>$1 - \alpha^n$</th>
<th>$\theta_n^{(I)}$</th>
<th>$1/\lambda_n^{(I)}$</th>
<th>$\theta_n^{(II)}$</th>
<th>$1/\lambda_n^{(II)}$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price stickiness</td>
<td></td>
</tr>
<tr>
<td>Labor share</td>
<td></td>
</tr>
<tr>
<td>Set of parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(I)</td>
<td>(II)</td>
<td>(III)</td>
<td>(I)</td>
<td>(II)</td>
<td>(III)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline value</td>
<td>0.086</td>
<td>5.0</td>
<td>0.88</td>
<td>5.0</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONDI-Weights

	0.083	5.8	0.91	5.4	0.89	81.3	89.9	55.2	82.4	92.2	88.1	90.4	
Core													
Non-core	0.118	4.0	0.83	4.4	0.85	18.7	10.1	14.8	21.6	17.9	7.8	11.9	9.6

Welfare Loss - Inflation Equivalent from Targeting

	0	0.005	0.000	0.000	0.000	0.003	0.003	0.000
CONDI								
Headline PCE	0	0.36	0.13	0.07	0.02	0.50	0.27	0.39
Core PCE	0.50	0.51	0.50	0.53	0.52	0.48	0.55	0.52

Note: All weights are in percentage points. Inflation equivalent welfare losses are monthly inflation rates in percentage points. Variation in labor shares due to (I) demand elasticity (preferences) with labor elasticity at baseline value, (II) labor elasticity of output (technology) with demand elasticity at baseline, (III) half preferences half technology.
Table 3: Optimal weights and welfare losses under different heterogeneity cases for 15 PCE categories

<table>
<thead>
<tr>
<th>Heterogeneity in Core</th>
<th>1 - α</th>
<th>$\theta_n^{(I)}$</th>
<th>$1/\lambda_n^{(I)}$</th>
<th>$\theta_n^{(III)}$</th>
<th>$1/\lambda_n^{(III)}$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price stickiness</td>
<td></td>
</tr>
<tr>
<td>Labor share</td>
<td></td>
</tr>
<tr>
<td>Set of parameters</td>
<td></td>
</tr>
<tr>
<td>Baseline value</td>
<td>0.086</td>
<td>5.0</td>
<td>0.88</td>
<td>5.0</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONDI-Weights

Motor vehicles	0.313	5.6	0.90	5.3	0.89	5.5	0.4	4.3	5.5	5.4	0.3	0.3	0.3
Furniture and household equipment	0.060	5.0	0.88	5.0	0.88	4.5	8.5	3.2	4.7	4.3	5.8	9.2	8.0
Other durables	0.064	4.8	0.87	4.9	0.88	2.4	3.9	1.7	2.5	2.2	2.6	4.4	3.7
Food at home	0.123	4.1	0.83	4.5	0.86	8.5	3.8	5.3	9.8	7.9	2.2	4.5	3.5
Food away from home	0.050	5.0	0.88	5.0	0.88	5.2	14.1	3.8	5.4	5.0	9.7	15.4	13.4
Clothing and shoes	0.310	4.7	0.87	4.8	0.87	4.2	0.3	2.9	4.5	4.0	0.2	0.3	0.3
Gasoline, fuel oil and other energy goods	0.876	3.3	0.77	4.0	0.82	2.8	0.0	1.5	3.8	2.6	0.0	0.0	0.0
Other non-durables	0.094	4.5	0.85	4.7	0.87	7.9	6.1	5.3	8.7	7.5	3.8	6.9	5.6
Housing	0.103	4.9	0.87	4.9	0.88	15.1	9.5	10.6	15.9	14.4	6.4	10.4	9.0
Household operations - Other	0.107	5.5	0.90	5.2	0.89	3.5	2.1	2.7	3.5	3.4	1.5	2.1	2.0
Household operations - Electricity and gas	0.381	2.4	0.65	3.2	0.75	2.2	0.1	0.9	2.7	1.9	0.0	0.2	0.1
Transportation	0.082	5.4	0.90	5.2	0.89	4.0	4.1	3.1	4.1	3.9	3.0	4.3	3.9
Medical Care	0.083	18.5	1.00	7.7	0.94	16.3	15.9	36.5	13.1	19.4	34.1	13.2	18.7
Recreation	0.090	7.7	0.96	6.0	0.92	4.1	3.4	4.1	3.6	4.1	3.3	3.1	3.4
Other services	0.058	7.6	0.96	6.0	0.92	13.9	28.0	14.1	12.3	14.2	27.0	25.7	28.2

Welfare Loss - Inflation Equivalent from Targeting

<table>
<thead>
<tr>
<th>CONDI</th>
<th>0.002</th>
<th>0.006</th>
<th>0.003</th>
<th>0.000</th>
<th>0.001</th>
<th>0.004</th>
<th>0.002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headline PCE</td>
<td>0.13</td>
<td>0.41</td>
<td>0.22</td>
<td>0.14</td>
<td>0.07</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>Core PCE</td>
<td>0.63</td>
<td>0.08</td>
<td>0.61</td>
<td>0.71</td>
<td>0.65</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>Adjusted core PCE</td>
<td>0.73</td>
<td>0.04</td>
<td>0.67</td>
<td>0.80</td>
<td>0.74</td>
<td>0.03</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Note: All weights are in percentage points. Inflation equivalent welfare losses are monthly inflation rates in percentage points. Variation in labor shares due to (I) demand elasticity (preferences) with labor elasticity at baseline value, (II) labor elasticity of output (technology) with demand elasticity at baseline, (III) half preferences half technology.